<< Chapter < Page Chapter >> Page >

f X Y ( t , u ) = 24 11 t u for 0 t 2 , 0 u min { 1 , 2 - t }

P ( X 1 , Y 1 ) , P ( X > 1 ) , P ( X < Y )

Region is bounded by t = 0 , u = 0 , u = 2 , u = 2 - t

f X ( t ) = I [ 0 , 1 ] ( t ) 24 11 0 1 t u d u + I ( 1 , 2 ] ( t ) 24 11 0 2 - t t u d u =
I [ 0 , 1 ] ( t ) 12 11 t + I ( 1 , 2 ] ( t ) 12 11 t ( 2 - t ) 2
f Y ( u ) = 24 11 0 2 - u t u d t = 12 11 u ( u - 2 ) 2 , 0 u 1
P 1 = 24 11 0 1 0 1 t u d u d t = 6 / 11 P 2 = 24 11 1 2 0 2 - t t u d u d t = 5 / 11
P 3 = 24 11 0 1 t 1 t u d u d t = 3 / 11
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 1] Enter number of X approximation points 400Enter number of Y approximation points 200 Enter expression for joint density (24/11)*t.*u.*(u<=2-t) Use array operations on X, Y, PX, PY, t, u, and PM1 = (t<=1)&(u<=1); P1 = total(M1.*P)P1 = 0.5447 % Theoretical = 6/11 = 0.5455P2 = total((t>1).*P) P2 = 0.4553 % Theoretical = 5/11 = 0.4545P3 = total((t<u).*P) P3 = 0.2705 % Theoretical = 3/11 = 0.2727
Got questions? Get instant answers now!

f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t }

P ( X 1 , Y 1 ) , P ( Y 1 ) , P ( Y X )

Region is bounded by t = 0 , t = 2 , u = 0 , u = 2 - t ( 0 t 1 ) , u = t ( 1 < t 2 )

f X ( t ) = I [ 0 , 1 ] ( t ) 3 23 0 2 - t ( t + 2 u ) d u + I ( 1 , 2 ] ( t ) 3 23 0 t ( t + 2 u ) d u = I [ 0 , 1 ] ( t ) 6 23 ( 2 - t ) + I ( 1 , 2 ] ( t ) 6 23 t 2
f Y ( u ) = I [ 0 , 1 ] ( u ) 3 23 0 2 ( t + 2 u ) d t + I ( 1 , 2 ] ( u ) 3 23 0 2 - u ( t + 2 u ) d t + 3 23 u 2 ( t + 2 u ) d t =
I [ 0 , 1 ] ( u ) 6 23 ( 2 u + 1 ) + I ( 1 , 2 ] ( u ) 3 23 ( 4 + 6 u - 4 u 2 )
P 1 = 3 23 1 2 1 t ( t + 2 u ) d u d t = 13 / 46 , P 2 = 3 23 0 2 0 1 ( t + 2 u ) d u d t = 12 / 23
P 3 = 3 23 0 2 0 t ( t + 2 u ) d u d t = 16 / 23
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 200Enter number of Y approximation points 200 Enter expression for joint density (3/23)*(t+2*u).*(u<=max(2-t,t)) Use array operations on X, Y, PX, PY, t, u, and PM1 = (t>=1)&(u>=1); P1 = total(M1.*P)P1 = 0.2841 13/46 % Theoretical = 13/46 = 0.2826P2 = total((u<=1).*P) P2 = 0.5190 % Theoretical = 12/23 = 0.5217P3 = total((u<=t).*P) P3 = 0.6959 % Theoretical = 16/23 = 0.6957
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 179 ( 3 t 2 + u ) , for 0 t 2 , 0 u min { 2 , 3 - t }

P ( X 1 , Y 1 ) , P ( X 1 , Y 1 ) , P ( Y < X )

Region has two parts: (1) 0 t 1 , 0 u 2 (2) 1 < t 2 , 0 u 3 - t

f X ( t ) = I [ 0 , 1 ] ( t ) 12 179 0 2 ( 3 t 2 + u ) d u + I ( 1 , 2 ] ( t ) 12 179 0 3 - t ( 3 t 2 + u ) d u =
I [ 0 , 1 ] ( t ) 24 179 ( 3 t 2 + 1 ) + I ( 1 , 2 ] ( t ) 6 179 ( 9 - 6 t + 19 t 2 - 6 t 3 )
f Y ( u ) = I [ 0 , 1 ] ( u ) 12 179 0 2 ( 3 t 2 + u ) d t + I ( 1 , 2 ] ( u ) 12 179 0 3 - u ( 3 t 2 + u ) d t =
I [ 0 , 1 ] ( u ) 24 179 ( 4 + u ) + I ( 1 , 2 ] ( u ) 12 179 ( 27 - 24 u + 8 u 2 - u 3 )
P 1 = 12 179 1 2 1 3 - t ( 3 t 2 + u ) d u d t = 41 / 179 P 2 = 12 179 0 1 0 1 ( 3 t 2 + u ) d u d t = 18 / 179
P 3 = 12 179 0 3 / 2 0 t ( 3 t 2 + u ) d u d t + 12 179 3 / 2 2 0 3 - t ( 3 t 2 + u ) d u d t = 1001 / 1432
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 200Enter number of Y approximation points 200 Enter expression for joint density (12/179)*(3*t.^2+u).* ...(u<=min(2,3-t)) Use array operations on X, Y, PX, PY, t, u, and Pfx = PX/dx; FX = cumsum(PX);plot(X,fx,X,FX) M1 = (t>=1)&(u>=1); P1 = total(M1.*P)P1 = 2312 % Theoretical = 41/179 = 0.2291 M2 = (t<=1)&(u<=1); P2 = total(M2.*P)P2 = 0.1003 % Theoretical = 18/179 = 0.1006 M3 = u<=min(t,3-t); P3 = total(M3.*P)P3 = 0.7003 % Theoretical = 1001/1432 = 0.6990
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 227 ( 3 t + 2 t u ) for 0 t 2 , 0 u min { 1 + t , 2 }

P ( X 1 / 2 , Y 3 / 2 ) , P ( X 1 . 5 , Y > 1 ) , P ( Y < X )

Region is in two parts:

  1. 0 t 1 , 0 u 1 + t
  2. (2) 1 < t 2 , 0 u 2
f X ( t ) = I [ 0 , 1 ] ( t ) 0 1 + t f X Y ( t , u ) d u + I ( 1 , 2 ] ( t ) 0 2 f X Y ( t , u ) d u =
I [ 0 , 1 ] ( t ) 12 227 ( t 3 + 5 t 2 + 4 t ) + I ( 1 , 2 ] ( t ) 120 227 t
f Y ( u ) = I [ 0 , 1 ] ( u ) 0 2 f X Y ( t , u ) d t + I ( 1 , 2 ] ( u ) u - 1 2 f X Y ( t , u ) d t =
I [ 0 , 1 ] ( u ) 24 227 ( 2 u + 3 ) + I ( 1 , 2 ] ( u ) 6 227 ( 2 u + 3 ) ( 3 + 2 u - u 2 )
= I [ 0 , 1 ] ( u ) 24 227 ( 2 u + 3 ) + I ( 1 , 2 ] ( u ) 6 227 ( 9 + 12 u + u 2 - 2 u 3 )
P 1 = 12 227 0 1 / 2 0 1 + t ( 3 t + 2 t u ) d u d t = 139 / 3632
P 2 = 12 227 0 1 1 1 + t ( 3 t + 2 t u ) d u d t + 12 227 1 3 / 2 1 2 ( 3 t + 2 t u ) d u d t = 68 / 227
P 3 = 12 227 0 2 1 t ( 3 t + 2 t u ) d u d t = 144 / 227
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 200Enter number of Y approximation points 200 Enter expression for joint density (12/227)*(3*t+2*t.*u).* ...(u<=min(1+t,2)) Use array operations on X, Y, PX, PY, t, u, and PM1 = (t<=1/2)&(u<=3/2); P1 = total(M1.*P)P1 = 0.0384 % Theoretical = 139/3632 = 0.0383 M2 = (t<=3/2)&(u>1); P2 = total(M2.*P)P2 = 0.3001 % Theoretical = 68/227 = 0.2996 M3 = u<t; P3 = total(M3.*P)P3 = 0.6308 % Theoretical = 144/227 = 0.6344
Got questions? Get instant answers now!

f X Y ( t , u ) = 2 13 ( t + 2 u ) for 0 t 2 , 0 u min { 2 t , 3 - t }

P ( X < 1 ) , P ( X 1 , Y 1 ) , P ( Y X / 2 )

Region bounded by t = 2 , u = 2 t ( 0 t 1 ) , 3 - t ( 1 t 2)

f X ( t ) = I [ 0 , 1 ] ( t ) 2 13 0 2 t ( t + 2 u ) d u + I ( 1 , 2 ] ( t ) 2 13 0 3 - t ( t + 2 u ) d u = I [ 0 , 1 ] ( t ) 12 13 t 2 + I ( 1 , 2 ] ( t ) 6 13 ( 3 - t )
f Y ( u ) = I [ 0 , 1 ] ( u ) 2 13 u / 2 2 ( t + 2 u ) d t + I ( 1 , 2 ] ( u ) 2 13 u / 2 3 - u ( t + 2 u ) d t =
I [ 0 , 1 ] ( u ) ( 4 13 + 8 13 u - 9 52 u 2 ) + I ( 1 , 2 ] ( u ) ( 9 13 + 6 13 u - 21 52 u 2 )
P 1 = 0 1 0 2 t ( t + 2 u ) d u d t = 4 / 13 P 2 = 1 2 0 1 ( t + 2 u ) d u d t = 5 / 13
P 3 = 0 2 0 t / 2 ( t + 2 u ) d u d t = 4 / 13
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 400Enter number of Y approximation points 400 Enter expression for joint density (2/13)*(t+2*u).*(u<=min(2*t,3-t)) Use array operations on X, Y, PX, PY, t, u, and PP1 = total((t<1).*P) P1 = 0.3076 % Theoretical = 4/13 = 0.3077M2 = (t>=1)&(u<=1); P2 = total(M2.*P)P2 = 0.3844 % Theoretical = 5/13 = 0.3846 P3 = total((u<=t/2).*P) P3 = 0.3076 % Theoretical = 4/13 = 0.3077
Got questions? Get instant answers now!

f X Y ( t , u ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 2 u ) + I ( 1 , 2 ] ( t ) 9 14 t 2 u 2 for 0 u 1 .

P ( 1 / 2 X 3 / 2 , Y 1 / 2 )

Region is rectangle bounded by t = 0 , t = 2 , u = 0 , u = 1

f X Y ( t , u ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 2 u ) + I ( 1 , 2 ] ( t ) 9 14 t 2 u 2 , 0 u 1
f X ( t ) = I [ 0 , 1 ] ( t ) 3 8 0 1 ( t 2 + 2 u ) d u + I ( 1 , 2 ] ( t ) 9 14 0 1 t 2 u 2 d u = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 1 ) + I ( 1 , 2 ] ( t ) 3 14 t 2
f Y ( u ) = 3 8 0 1 ( t 2 + 2 u ) d t + 9 14 1 2 t 2 u 2 d t = 1 8 + 3 4 u + 3 2 u 2 0 u 1
P 1 = 3 8 1 / 2 1 0 1 / 2 ( t 2 + 2 u ) d u d t + 9 14 1 3 / 2 0 1 / 2 t 2 u 2 d u d t = 55 / 448
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 1] Enter number of X approximation points 400Enter number of Y approximation points 200 Enter expression for joint density (3/8)*(t.^2+2*u).*(t<=1) ... + (9/14)*(t.^2.*u.^2).*(t>1) Use array operations on X, Y, PX, PY, t, u, and PM = (1/2<=t)&(t<=3/2)&(u<=1/2); P = total(M.*P)P = 0.1228 % Theoretical = 55/448 = 0.1228
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask