<< Chapter < Page Chapter >> Page >

f X Y ( t , u ) = 1 8 ( t + u ) for 0 t 2 , 0 u 2 .

P ( X > 1 / 2 , Y > 1 / 2 ) , P ( 0 X 1 , Y > 1 ) , P ( Y X )

Region is the square 0 t 2 , 0 u 2 .

f X ( t ) = 1 8 0 2 ( t + u ) = 1 4 ( t + 1 ) = f Y ( t ) , 0 t 2
P 1 = 1 / 2 2 1 / 2 2 ( t + u ) d u d t = 45 / 64 P 2 = 0 1 1 2 ( t + u ) d u d t = 1 / 4
P 3 = 0 2 0 t ( t + u ) d u d t = 1 / 2
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 200Enter number of Y approximation points 200 Enter expression for joint density (1/8)*(t+u)Use array operations on X, Y, PX, PY, t, u, and P fx = PX/dx;FX = cumsum(PX); plot(X,fx,X,FX)M1 = (t>1/2)&(u>1/2); P1 = total(M1.*P)P1 = 0.7031 % Theoretical = 45/64 = 0.7031 M2 = (t<=1)&(u>1); P2 = total(M2.*P)P2 = 0.2500 % Theoretical = 1/4 M3 = u<=t; P3 = total(M3.*P)P3 = 0.5025 % Theoretical = 1/2
Got questions? Get instant answers now!

f X Y ( t , u ) = 4 u e - 2 t for 0 t , 0 u 1

P ( X 1 , Y > 1 ) , P ( X > 0 . 5 , 1 / 2 < Y < 3 / 4 ) , P ( X < Y )

Region is strip bounded by t = 0 , u = 0 , u = 1

f X ( t ) = 2 e - 2 t , 0 t , f Y ( u ) = 2 u , 0 u 1 , f X Y = f X f Y
P 1 = 0 , P 2 = 0 . 5 2 e - 2 t d t 1 / 2 3 / 4 2 u d u = e - 1 5 / 16
P 3 = 4 0 1 t 1 u e - 2 t d u d t = 3 2 e - 2 + 1 2 = 0 . 7030
tuappr Enter matrix [a b]of X-range endpoints [0 3] Enter matrix [c d]of Y-range endpoints [0 1] Enter number of X approximation points 400Enter number of Y approximation points 200 Enter expression for joint density 4*u.*exp(-2*t)Use array operations on X, Y, PX, PY, t, u, and P M2 = (t>0.5)&(u>0.5)&(u<3/4); p2 = total(M2.*P)p2 = 0.1139 % Theoretical = (5/16)exp(-1) = 0.1150 p3 = total((t<u).*P) p3 = 0.7047 % Theoretical = 0.7030
Got questions? Get instant answers now!

f X Y ( t , u ) = 3 88 ( 2 t + 3 u 2 ) for 0 t 2 , 0 u 1 + t .

F X Y ( 1 , 1 ) , P ( X 1 , Y > 1 ) , P ( | X - Y | < 1 )

Region bounded by t = 0 , t = 2 , u = 0 , u = 1 + t

f X ( t ) = 3 88 0 1 + t ( 2 t + 3 u 2 ) d u = 3 88 ( 1 + t ) ( 1 + 4 t + t 2 ) = 3 88 ( 1 + 5 t + 5 t 2 + t 3 ) , 0 t 2
f Y ( u ) = I [ 0 , 1 ] ( u ) 3 88 0 2 ( 2 t + 3 u 2 ) d t + I ( 1 , 3 ] ( u ) 3 88 u - 1 2 ( 2 t + 3 u 2 ) d t =
I [ 0 , 1 ] ( u ) 3 88 ( 6 u 2 + 4 ) + I ( 1 , 3 ] ( u ) 3 88 ( 3 + 2 u + 8 u 2 - 3 u 3 )
F X Y ( 1 , 1 ) = 0 1 0 1 f X Y ( t , u ) d u d t = 3 / 44
P 1 = 0 1 1 1 + t f X Y ( t , u ) d u d t = 41 / 352 P 2 = 0 1 1 1 + t f X Y ( t , u ) d u d t = 329 / 352
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 3] Enter number of X approximation points 200Enter number of Y approximation points 300 Enter expression for joint density (3/88)*(2*t+3*u.^2).*(u<=1+t) Use array operations on X, Y, PX, PY, t, u, and Pfx = PX/dx; FX = cumsum(PX);plot(X,fx,X,FX) MF = (t<=1)&(u<=1); F = total(MF.*P)F = 0.0681 % Theoretical = 3/44 = 0.0682 M1 = (t<=1)&(u>1); P1 = total(M1.*P)P1 = 0.1172 % Theoretical = 41/352 = 0.1165 M2 = abs(t-u)<1; P2 = total(M2.*P)P2 = 0.9297 % Theoretical = 329/352 = 0.9347
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 t 2 u on the parallelogram with vertices ( - 1 , 0 ) , ( 0 , 0 ) , ( 1 , 1 ) , ( 0 , 1 )

P ( X 1 / 2 , Y > 0 ) , P ( X < 1 / 2 , Y 1 / 2 ) , P ( Y 1 / 2 )

Region bounded by u = 0 , u = t , u = 1 , u = t + 1

f X ( t ) = I [ - 1 , 0 ] ( t ) 12 0 t + 1 t 2 u d u + I ( 0 , 1 ] ( t ) 12 t 1 t 2 u d u = I [ - 1 , 0 ] ( t ) 6 t 2 ( t + 1 ) 2 + I ( 0 , 1 ] ( t ) 6 t 2 ( 1 - t 2 )
f Y ( u ) = 12 u - 1 t t 2 u d t + 12 u 3 - 12 u 2 + 4 u , 0 u 1
P 1 = 1 - 12 1 / 2 1 t 1 t 2 u d u d t = 33 / 80 , P 2 = 12 0 1 / 2 u - 1 u t 2 u d t d u = 3 / 16
P 3 = 1 - P 2 = 13 / 16
tuappr Enter matrix [a b]of X-range endpoints [-1 1] Enter matrix [c d]of Y-range endpoints [0 1] Enter number of X approximation points 400Enter number of Y approximation points 200 Enter expression for joint density 12*u.*t.^2.*((u<=t+1)&(u>=t)) Use array operations on X, Y, PX, PY, t, u, and Pp1 = total((t<=1/2).*P) p1 = 0.4098 % Theoretical = 33/80 = 0.4125M2 = (t<1/2)&(u<=1/2); p2 = total(M2.*P)p2 = 0.1856 % Theoretical = 3/16 = 0.1875 P3 = total((u>=1/2).*P) P3 = 0.8144 % Theoretical = 13/16 = 0.8125
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask