<< Chapter < Page Chapter >> Page >

As a variation of [link] , Suppose a pair of dice is rolled instead of a single die. Determine the joint distribution for the pair { X , Y } and from this determine the marginal distribution for Y .

% file npr08_04.m % Solution for [link] X = 2:12; Y = 0:12;PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1];P0 = zeros(11,13); for i = 1:11P0(i,1:i+2) = PX(i)*ibinom(i+1,1/2,0:i+1); endP = rot90(P0); PY = fliplr(sum(P'));disp('Answers are in X, Y, PY, P') npr08_04 Answers are in X, Y, PY, P disp(P)Columns 1 through 7 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0.00050 0 0 0 0 0.0013 0.0043 0 0 0 0 0.0022 0.0091 0.01520 0 0 0.0035 0.0130 0.0273 0.0304 0 0 0.0052 0.0174 0.0326 0.0456 0.03800 0.0069 0.0208 0.0347 0.0434 0.0456 0.0304 0.0069 0.0208 0.0312 0.0347 0.0326 0.0273 0.01520.0139 0.0208 0.0208 0.0174 0.0130 0.0091 0.0043 0.0069 0.0069 0.0052 0.0035 0.0022 0.0013 0.0005Columns 8 through 11 0 0 0 0.00000 0 0.0000 0.0001 0 0.0001 0.0003 0.00040.0002 0.0008 0.0015 0.0015 0.0020 0.0037 0.0045 0.00340.0078 0.0098 0.0090 0.0054 0.0182 0.0171 0.0125 0.00630.0273 0.0205 0.0125 0.0054 0.0273 0.0171 0.0090 0.00340.0182 0.0098 0.0045 0.0015 0.0078 0.0037 0.0015 0.00040.0020 0.0008 0.0003 0.0001 0.0002 0.0001 0.0000 0.0000disp(PY) Columns 1 through 70.0269 0.1025 0.1823 0.2158 0.1954 0.1400 0.0806 Columns 8 through 130.0375 0.0140 0.0040 0.0008 0.0001 0.0000
Got questions? Get instant answers now!

Suppose a pair of dice is rolled. Let X be the total number of spots which turn up. Roll the pair an additional X times. Let Y be the number of sevens that are thrown on the X rolls. Determine the joint distribution for the pair { X , Y } and from this determine the marginal distribution for Y . What is the probability of three or more sevens?

% file npr08_05.m % Data and basic calculations for [link] PX = (1/36)*[1 2 3 4 5 6 5 4 3 2 1];X = 2:12; Y = 0:12;P0 = zeros(11,13); for i = 1:11P0(i,1:i+2) = PX(i)*ibinom(i+1,1/6,0:i+1); endP = rot90(P0); PY = fliplr(sum(P'));disp('Answers are in X, Y, P, PY') npr08_05 Answers are in X, Y, P, PY disp(PY)Columns 1 through 7 0.3072 0.3660 0.2152 0.0828 0.0230 0.0048 0.0008Columns 8 through 13 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
Got questions? Get instant answers now!

The pair { X , Y } has the joint distribution (in m-file npr08_06.m ):

X = [ - 2 . 3 - 0 . 7 1 . 1 3 . 9 5 . 1 ] Y = [ 1 . 3 2 . 5 4 . 1 5 . 3 ]
P = 0 . 0483 0 . 0357 0 . 0420 0 . 0399 0 . 0441 0 . 0437 0 . 0323 0 . 0380 0 . 0361 0 . 0399 0 . 0713 0 . 0527 0 . 0620 0 . 0609 0 . 0551 0 . 0667 0 . 0493 0 . 0580 0 . 0651 0 . 0589

Determine the marginal distributions and the corner values for F X Y . Determine P ( X + Y > 2 ) and P ( X Y ) .

npr08_06 Data are in X, Y, P jcalcEnter JOINT PROBABILITIES (as on the plane) P Enter row matrix of VALUES of X XEnter row matrix of VALUES of Y Y Use array operations on matrices X, Y, PX, PY, t, u, and Pdisp([X;PX]')-2.3000 0.2300 -0.7000 0.17001.1000 0.2000 3.9000 0.20205.1000 0.1980disp([Y;PY]')1.3000 0.2980 2.5000 0.30204.1000 0.1900 5.3000 0.2100jddbn Enter joint probability matrix (as on the plane) PTo view joint distribution function, call for FXY disp(FXY)0.2300 0.4000 0.6000 0.8020 1.0000 0.1817 0.3160 0.4740 0.6361 0.79000.1380 0.2400 0.3600 0.4860 0.6000 0.0667 0.1160 0.1740 0.2391 0.2980P1 = total((t+u>2).*P) P1 = 0.7163P2 = total((t>=u).*P) P2 = 0.2799
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask