<< Chapter < Page Chapter >> Page >
N sin θ = mv 2 r . size 12{N"sin"θ= { { ital "mv" rSup { size 8{2} } } over {r} } } {}

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is N cos θ size 12{N"cos"θ} {} , and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

N cos θ = mg . size 12{N"cos"θ= ital "mg"} {}

Now we can combine the last two equations to eliminate N size 12{N} {} and get an expression for θ size 12{θ} {} , as desired. Solving the second equation for N = mg / ( cos θ ) size 12{N= ital "mg"/ \( "cos"θ \) } {} , and substituting this into the first yields

mg sin θ cos θ = mv 2 r
mg tan ( θ ) = mv 2 r tan θ = v 2 rg.

Taking the inverse tangent gives

θ = tan 1 v 2 rg (ideally banked curve, no friction). size 12{θ="tan" rSup { size 8{ - 1} } left ( { {v rSup { size 8{2} } } over { ital "rg"} } right )} {}

This expression can be understood by considering how θ size 12{θ} {} depends on v size 12{v} {} and r size 12{r} {} . A large θ size 12{θ} {} will be obtained for a large v size 12{v} {} and a small r size 12{r} {} . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that θ size 12{θ} {} does not depend on the mass of the vehicle.

In this figure, a car from the backside is shown, turning to the left, on a slope angling downward to the left. A point in the middle of the back of the car is shown which shows one downward vector depicting weight, w, and an upward arrow depicting force N, which is a linear line along the car and is at an angle theta with the straight up arrow. The slope is at an angle theta with the horizontal surface below the slope. The force values, N multipliy sine theta equals to centripetal force, the net force on the car and N cosine theta equal to w are given below the car.
The car on this banked curve is moving away and turning to the left.

What is the ideal speed to take a steeply banked tight curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

tan θ = v 2 rg size 12{"tan"θ= { {v rSup { size 8{2} } } over { ital "rg"} } } {}

we get

v = ( rg tan θ ) 1 / 2 . size 12{v= \( ital "rg""tan"θ \) rSup { size 8{1/2} } } {}

Noting that tan 65.0º = 2.14, we obtain

v = ( 100 m ) ( 9.80 m /s 2 ) ( 2 . 14 ) 1 / 2 = 45.8 m/s.

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

Take-home experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the end of the club or racquet. You may choose to do this in slow motion.

Phet explorations: gravity and orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Gravity and Orbits

Section summary

  • Centripetal force F c size 12{F rSub { size 8{c} } } {} is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity v size 12{v} {} and has magnitude
    F c = ma c ,

    which can also be expressed as

    F c = m v 2 r or F c = mr ω 2 ,

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?

Ask