<< Chapter < Page Chapter >> Page >
The photo shows a woman squatting next to a stream of green-colored water.
This hot spring in Yellowstone National Park flows toward the foreground. Cyanobacteria in the spring are green, and as water flows down the heat gradient, the intensity of the color increases because cell density increases. The water is cooler at the edges of the stream than in the center, causing the edges to appear greener. (credit: Graciela Brelles-Mariño)

Before the atmosphere became oxygenated, the planet was subjected to strong radiation; thus, the first organisms would have flourished where they were more protected, such as in ocean depths or beneath the surface of Earth. At this time, too, strong volcanic activity was common on Earth, so it is likely that these first organisms—the first prokaryotes—were adapted to very high temperatures. These are not the typical temperate environments in which most life flourishes today; thus, we can conclude that the first organisms that appeared on Earth likely were able to withstand harsh conditions.

Microbial mats may represent the earliest forms of life on Earth, and there is fossil evidence of their presence, starting about 3.5 billion years ago. A microbial mat    is a large biofilm, a multi-layered sheet of prokaryotes ( [link] a ), including mostly bacteria, but also archaea. Microbial mats are a few centimeters thick, and they typically grow on moist surfaces. Their various types of prokaryotes carry out different metabolic pathways, and for this reason, they reflect various colors. Prokaryotes in a microbial mat are held together by a gummy-like substance that they secrete.

The first microbial mats likely obtained their energy from hydrothermal vents. A hydrothermal vent    is a fissure in Earth’s surface that releases geothermally heated water. With the evolution of photosynthesis about 3 billion years ago, some prokaryotes in microbial mats came to use a more widely available energy source—sunlight—whereas others were still dependent on chemicals from hydrothermal vents for food.

Part a shows a reddish-yellow mound with small chimneys growing out of it. Part b shows rock, marbled white and gray.
(a) This microbial mat grows over a hydrothermal vent in the Pacific Ocean. Chimneys such as the one indicated by the arrow allow gases to escape. (b) This photo shows stromatolites that are nearly 1.5 billion years old, found in Glacier National Park, Montana. (credit a: modification of work by Dr. Bob Embley, NOAA PMEL; credit b: modification of work by P. Carrara, NPS)

Fossilized microbial mats represent the earliest record of life on Earth. A stromatolite    is a sedimentary structure formed when minerals are precipitated from water by prokaryotes in a microbial mat ( [link] b ). Stromatolites form layered rocks made of carbonate or silicate. Although most stromatolites are artifacts from the past, there are places on Earth where stromatolites are still forming. For example, living stromatolites have been found in the Anza-Borrego Desert State Park in San Diego County, California.

Some prokaryotes are able to thrive and grow under conditions that would kill a plant or animal. Bacteria and archaea that grow under extreme conditions are called extremophiles , meaning “lovers of extremes.” Extremophiles have been found in extreme environments of all kinds, including the depths of the oceans, hot springs, the Arctic and the Antarctic, very dry places, deep inside Earth, harsh chemical environments, and high radiation environments. Extremophiles give us a better understanding of prokaryotic diversity and open up the possibility of the discovery of new therapeutic drugs or industrial applications. They have also opened up the possibility of finding life in other places in the solar system, which have harsher environments than those typically found on Earth. Many of these extremophiles cannot survive in moderate environments.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University of georgia biology. OpenStax CNX. Dec 09, 2013 Download for free at https://legacy.cnx.org/content/col11585/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University of georgia biology' conversation and receive update notifications?

Ask