<< Chapter < Page Chapter >> Page >
Details the Continuous-Time Fourier Transform.

Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems , calculating the output of an LTI system given s t as an input amounts to simple multiplication, where H s is the eigenvalue corresponding to s. As shown in the figure, a simple exponential input would yield the output

y t H s s t

Using this and the fact that is linear, calculating y t for combinations of complex exponentials is also straightforward.

c 1 s 1 t c 2 s 2 t c 1 H s 1 s 1 t c 2 H s 2 s 2 t n c n s n t n c n H s n s n t

The action of H on an input such as those in the two equations above is easy to explain. independently scales each exponential component s n t by a different complex number H s n . As such, if we can write a function f t as a combination of complex exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of simpler functions bysuperposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because theCTFT deals with nonperiodic signals, we must find a way to include all real frequencies in thegeneral equations.For the CTFT we simply utilize integration over real numbers rather than summation over integers in order to express the aperiodic signals.

Fourier transform synthesis

Joseph Fourier demonstrated that an arbitrary s t can be written as a linear combination of harmonic complex sinusoids

s t n c n j ω 0 n t
where ω 0 2 T is the fundamental frequency. For almost all s t of practical interest, there exists c n to make [link] true. If s t is finite energy ( s t L 0 T 2 ), then the equality in [link] holds in the sense of energy convergence; if s t is continuous, then [link] holds pointwise. Also, if s t meets some mild conditions (the Dirichlet conditions), then [link] holds pointwise everywhere except at points of discontinuity.

The c n - called the Fourier coefficients - tell us "how much" of the sinusoid j ω 0 n t is in s t . The formula shows s t as a sum of complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system). Mathematically, it tells us that the set ofcomplex exponentials n n j ω 0 n t form a basis for the space of T-periodic continuous time functions.

Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the superposition principle. Let s T ( t ) be a periodic signal having period T . We want to consider what happens to this signal's spectrum as the period goes to infinity. We denote the spectrum for any assumed value of the period by c n ( T ) . We calculate the spectrum according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier Series .)

c n = 1 T 0 T s ( t ) exp ( - ı ω 0 t ) d t
where ω 0 = T and where we have used a symmetric placement of the integration interval about the origin for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the period. Define making the corresponding Fourier Series
s T ( t ) = - f ( t ) exp ( ı ω 0 t ) 1 T )
As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,
lim T s T ( t ) s ( t ) = - S ( f ) exp ( ı ω 0 t ) d f
with
S ( f ) = - s ( t ) exp ( - ı ω 0 t ) d t

Continuous-time fourier transform

Ω t f t Ω t

Inverse ctft

f t 1 2 Ω Ω Ω t

It is not uncommon to see the above formula written slightly different. One of themost common differences is the way that the exponential is written. The above equations use the radialfrequency variable Ω in the exponential, where Ω 2 f , but it is also common to include the more explicit expression, 2 f t , in the exponential. Click here for an overview of the notation used in Connexion's DSP modules.

We know from Euler's formula that cos ( ω t ) + sin ( ω t ) = 1 - j 2 e j ω t + 1 + j 2 e - j ω t .

Got questions? Get instant answers now!

Ctft definition demonstration

CTFTDemo
Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download, right-click and save as .cdf.

Example problems

Find the Fourier Transform (CTFT) of the function

f t α t t 0 0

In order to calculate the Fourier transform, all we need to use is [link] , complex exponentials , and basic calculus.

Ω t f t Ω t t 0 α t Ω t t 0 t α Ω 0 -1 α Ω
Ω 1 α Ω

Got questions? Get instant answers now!

Find the inverse Fourier transform of the ideal lowpass filter defined by

X Ω 1 Ω M 0

Here we will use [link] to find the inverse FT given that t 0 .

x t 1 2 Ω M M Ω t Ω w 1 2 Ω t 1 t M t
x t M sinc M t

Got questions? Get instant answers now!

Fourier transform summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f t n c n j ω 0 n t
The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.
c n 1 T t T 0 f t j ω 0 n t
In both of these equations ω 0 2 T is the fundamental frequency.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask