<< Chapter < Page Chapter >> Page >

Analytical geometry; calculation of the gradient line

The gradient of a line describes how steep the line is. In the figure, line P T is the steepest. Line P S is less steep than P T but is steeper than P R , and line P R is steeper than P Q .

The gradient of a line is defined as the ratio of the vertical distance to the horizontal distance. This can be understood by looking at the line as the hypotenuse of a right-angled triangle. Then the gradient is the ratio of the length of the vertical side of the triangle to the horizontal side of the triangle. Consider a line between a point A with co-ordinates ( x 1 ; y 1 ) and a point B with co-ordinates ( x 2 ; y 2 ) .

So we obtain the following for the gradient of a line:

Gradient = y 2 - y 1 x 2 - x 1

We can use the gradient of a line to determine if two lines are parallel or perpendicular. If the lines are parallel ( [link] a) then they will have the same gradient, i.e. m AB = m CD . If the lines are perpendicular ( [link] b) than we have: - 1 m AB = m CD

For example the gradient of the line between the points P and Q , with co-ordinates (2;1) and (-2;-2) ( [link] ) is:

Gradient = y 2 - y 1 x 2 - x 1 = - 2 - 1 - 2 - 2 = - 3 - 4 = 3 4

The following video provides a summary of the gradient of a line.

Gradient of a line

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Maths grade 10 rought draft. OpenStax CNX. Sep 29, 2011 Download for free at http://cnx.org/content/col11363/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Maths grade 10 rought draft' conversation and receive update notifications?

Ask