<< Chapter < Page Chapter >> Page >
  • State the ideal gas law in terms of molecules and in terms of moles.
  • Use the ideal gas law to calculate pressure change, temperature change, volume change, or the number of molecules or moles in a given volume.
  • Use Avogadro’s number to convert between number of molecules and number of moles.
The air inside this hot air balloon flying over Putrajaya, Malaysia, is hotter than the ambient air. As a result, the balloon experiences a buoyant force pushing it upward. (credit: Kevin Poh, Flickr)

In this section, we continue to explore the thermal behavior of gases. In particular, we examine the characteristics of atoms and molecules that compose gases. (Most gases, for example nitrogen, N 2 size 12{N rSub { size 8{2} } } {} , and oxygen, O 2 size 12{O rSub { size 8{2} } } {} , are composed of two or more atoms. We will primarily use the term “molecule” in discussing a gas because the term can also be applied to monatomic gases, such as helium.)

Gases are easily compressed. Gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β size 12{β} {} . This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.

The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in [link] . Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.

Spheres representing atoms and molecules; the spheres are relatively far apart and are distributed randomly.
Atoms and molecules in a gas are typically widely separated, as shown. Because the forces between them are quite weak at these distances, the properties of a gas depend more on the number of atoms per unit volume and on temperature than on the type of atom.

To get some idea of how pressure, temperature, and volume of a gas are related to one another, consider what happens when you pump air into an initially deflated tire. The tire’s volume first increases in direct proportion to the amount of air injected, without much increase in the tire pressure. Once the tire has expanded to nearly its full size, the walls limit volume expansion. If we continue to pump air into it, the pressure increases. The pressure will further increase when the car is driven and the tires move. Most manufacturers specify optimal tire pressure for cold tires. (See [link] .)

The figure has three parts, each part showing a pair of tires, and each tire connected to a pressure gauge. Each pair of tires represents the before and after images of a single tire, along with a change in pressure in that tire. In part a, the tire pressure is initially zero. After some air is added, represented by an arrow labeled Add air, the pressure rises to slightly above zero. In part b, the tire pressure is initially at the half-way mark. After some air is added, represented by an arrow labeled Add air, the pressure rises to the three-fourths mark. In part c, the tire pressure is initially at the three-fourths mark. After the temperature is raised, represented by an arrow labeled Increase temperature, the pressure rises to nearly the full mark.
(a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When the tire is filled to a certain point, the tire walls resist further expansion and the pressure increases with more air. (c) Once the tire is inflated, its pressure increases with temperature.

At room temperatures, collisions between atoms and molecules can be ignored. In this case, the gas is called an ideal gas, in which case the relationship between the pressure, volume, and temperature is given by the equation of state called the ideal gas law.

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics with linear momentum. OpenStax CNX. Aug 11, 2016 Download for free at http://legacy.cnx.org/content/col11960/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics with linear momentum' conversation and receive update notifications?

Ask