<< Chapter < Page Chapter >> Page >
  • State Newton’s third law of motion.
  • Explain the principle involved in propulsion of rockets and jet engines.
  • Derive an expression for the acceleration of the rocket.
  • Discuss the factors that affect the rocket’s acceleration.
  • Describe the function of a space shuttle.

Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is explained by the same physical principle—Newton’s third law of motion. Matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a bullet to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.

Making connections: take-home experiment—propulsion of a balloon

Hold a balloon and fill it with air. Then, let the balloon go. In which direction does the air come out of the balloon and in which direction does the balloon get propelled? If you fill the balloon with water and then let the balloon go, does the balloon’s direction change? Explain your answer.

[link] shows a rocket accelerating straight up. In part (a), the rocket has a mass m size 12{m} {} and a velocity v size 12{v} {} relative to Earth, and hence a momentum mv size 12{ ital "mv"} {} . In part (b), a time Δ t size 12{Δt} {} has elapsed in which the rocket has ejected a mass Δ m size 12{} {} of hot gas at a velocity v e size 12{v rSub { size 8{e} } } {} relative to the rocket. The remainder of the mass m Δ m size 12{ left (m - right )} {} now has a greater velocity v + Δ v size 12{ left (v+Δv right )} {} . The momentum of the entire system (rocket plus expelled gas) has actually decreased because the force of gravity has acted for a time Δ t size 12{Δt} {} , producing a negative impulse Δ p = mg Δ t size 12{Δ`p= - ital "mg"Δ`t} {} . (Remember that impulse is the net external force on a system multiplied by the time it acts, and it equals the change in momentum of the system.) So, the center of mass of the system is in free fall but, by rapidly expelling mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust pushes on the ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is greater in outer space than in the atmosphere or on the launch pad. In fact, gases are easier to expel into a vacuum.

By calculating the change in momentum for the entire system over Δ t size 12{Δ`t} {} , and equating this change to the impulse, the following expression can be shown to be a good approximation for the acceleration of the rocket.

a = v e m Δ m Δ t g size 12{a= { {v"" lSub { size 8{e} } } over {m} } { {Δm} over {Δt} } - g} {}

“The rocket” is that part of the system remaining after the gas is ejected, and g size 12{g} {} is the acceleration due to gravity.

Acceleration of a rocket

Acceleration of a rocket is

a = v e m Δ m Δ t g , size 12{a= { {v"" lSub { size 8{e} } } over {m} } { {Δm} over {Δt} } - g,} {}

where a size 12{a} {} is the acceleration of the rocket, v e size 12{v rSub { size 8{e} } } {} is the escape velocity, m size 12{m} {} is the mass of the rocket, Δ m size 12{Δm} {} is the mass of the ejected gas, and Δ t size 12{Δt} {} is the time in which the gas is ejected.

Picture a shows a rocket launched into space. It moves upward with velocity v in time t and the burning of fuel is also shown. After time t plus delta t the mass of fuel decreases by delta m and hence the velocity of the rocket increases to v plus delta v. The free body diagram shows the weight W of the rocket downward, reaction force upward and the resultant velocity upward too.
(a) This rocket has a mass m size 12{m} {} and an upward velocity v size 12{v} {} . The net external force on the system is mg size 12{ size 11{ - ital "mg"}} {} , if air resistance is neglected. (b) A time Δ t size 12{Δ`t} {} later the system has two main parts, the ejected gas and the remainder of the rocket. The reaction force on the rocket is what overcomes the gravitational force and accelerates it upward.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?

Ask