<< Chapter < Page Chapter >> Page >
A brief history of Longitude at Sea.

Until the end of the fifteenth century, sailors navigated with almost daily reference to land. In the Mediterranean it was difficult to go very far astray, and in western and northwest Europe navigation was coastal. Ships hugged the shore from Gibraltar to the Norway and the Baltic. The only exception to this rule was the trade between Scandinavia, Iceland, and occasionally Greenland. These routes were discovered (probably by accident) by the Vikings around 1000 CE. With the Portuguese voyages of discovery, in the fifteenth century, navigation became more difficult. For some time Portuguese sailors hugged the coast of Africa, as they carefully explored the contours of this continent. Both the winds and the currents there made sailing south difficult, however, and beginning with the voyages of Diaz (who rounded the Cape of Good Hope) in 1486, Columbus in 1492, and da Gama in 1498, Spanish and Portuguese sailors sailed the high seas for weeks on end without seeing land. How did they know where they were and whether they were on the right course?

Until the end of the fifteenth century, sailors navigated with almost daily reference to land. In the Mediterranean it was difficult to go very far astray, and in western and northwest Europe navigation was coastal. Ships hugged the shore from Gibraltar to the Norway and the Baltic. The only exception to this rule was the trade between Scandinavia, Iceland, and occasionally Greenland. These routes were discovered (probably by accident) by the Vikings around 1000 CE. With the Portuguese voyages of discovery, in the fifteenth century, navigation became more difficult. For some time Portuguese sailors hugged the coast of Africa, as they carefully explored the contours of this continent. Both the winds and the currents there made sailing south difficult, however, and beginning with the voyages of Diaz (who rounded the Cape of Good Hope) in 1486, Columbus in 1492, and da Gama in 1498, Spanish and Portuguese sailors sailed the high seas for weeks on end without seeing land. How did they know where they were and whether they were on the right course?

The only reference points on the high seas were the stars and Sun. Locations and courses now had to be spatial: a navigator needed to locate himself on a grid of imaginary lines of latitude and longitude.

The Portuguese pioneered the method of navigating by latitude. Ships had to be equipped with instruments (astrolabes, cross staffs) to measure the altitudes of stars or the Sun. It was not difficult to determine one's latitude to within about a degree by this method. Longitude was, however, a different matter. Observations of the Sun and stars were of no immediate help: in order to determine one's longitude with respect to, e.g., Lisbon, one had to find out the difference in local times between one's location and Lisbon. No easy method that was sufficiently accurate suggested itself. The magnitude of the problem is illustrated by the voyage of the Portuguese navigator Cabral who, on his way to the East Indies, swung west in the south Atlantic in order to pick up favorable winds and ran into the coast of Brazil. Further, the world maps prepared in the sixteenth century erred widely in the longitudes of places. The east-west length of the Mediterranean was in error by 19\x{00B0}--about 1100 miles! The longitudes of China and Japan were off by much larger margins. For nations engaged in trade with the East and West Indies, finding longitude at sea was a matter of national interest. Late in the sixteenth century the Spanish Crown instituted a large prize in the hope of a solution. This initiative was followed by the French, Dutch, and English governments in the seventeenth century.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Galileo project. OpenStax CNX. Jul 07, 2004 Download for free at http://cnx.org/content/col10234/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Galileo project' conversation and receive update notifications?

Ask