<< Chapter < Page Chapter >> Page >
  • Identify the equation of a parabola in standard form with given focus and directrix.
  • Identify the equation of an ellipse in standard form with given foci.
  • Identify the equation of a hyperbola in standard form with given foci.
  • Recognize a parabola, ellipse, or hyperbola from its eccentricity value.
  • Write the polar equation of a conic section with eccentricity e .
  • Identify when a general equation of degree two is a parabola, ellipse, or hyperbola.

Conic sections have been studied since the time of the ancient Greeks, and were considered to be an important mathematical concept. As early as 320 BCE, such Greek mathematicians as Menaechmus, Appollonius, and Archimedes were fascinated by these curves. Appollonius wrote an entire eight-volume treatise on conic sections in which he was, for example, able to derive a specific method for identifying a conic section through the use of geometry. Since then, important applications of conic sections have arisen (for example, in astronomy), and the properties of conic sections are used in radio telescopes, satellite dish receivers, and even architecture. In this section we discuss the three basic conic sections, some of their properties, and their equations.

Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes . One nappe is what most people mean by “cone,” having the shape of a party hat. A right circular cone can be generated by revolving a line passing through the origin around the y -axis as shown.

The line y = 3x is drawn and then rotated around the y axis to create two nappes, that is, a cone that is both above and below the x axis.
A cone generated by revolving the line y = 3 x around the y -axis.

Conic sections are generated by the intersection of a plane with a cone ( [link] ). If the plane is parallel to the axis of revolution (the y -axis), then the conic section    is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle. If the plane intersects one nappe at an angle to the axis (other than 90 ° ) , then the conic section is an ellipse.

This figure has three figures. The first figure shows a plain cone with two nappes. The second figure shows a cone with a plane through one nappes and the circle at the top, which creates a parabola. There is also a circle, which occurs when a plane intersects one of the nappes while parallel to the circular bases. There is also an ellipse, which occurs when a plane insects one of the nappes while not parallel to one of the circular bases. Note that the circle and the ellipse are bounded by the edges of the cone on all sides. The last figure shows a hyperbola, which is obtained when a plane intersects both nappes.
The four conic sections. Each conic is determined by the angle the plane makes with the axis of the cone.

Parabolas

A parabola is generated when a plane intersects a cone parallel to the generating line. In this case, the plane intersects only one of the nappes. A parabola can also be defined in terms of distances.

Definition

A parabola is the set of all points whose distance from a fixed point, called the focus    , is equal to the distance from a fixed line, called the directrix    . The point halfway between the focus and the directrix is called the vertex    of the parabola.

A graph of a typical parabola appears in [link] . Using this diagram in conjunction with the distance formula, we can derive an equation for a parabola. Recall the distance formula: Given point P with coordinates ( x 1 , y 1 ) and point Q with coordinates ( x 2 , y 2 ) , the distance between them is given by the formula

d ( P , Q ) = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 .

Then from the definition of a parabola and [link] , we get

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask