<< Chapter < Page Chapter >> Page >

With code like this, it’s common for every value of K(I) to be unique. This is called a permutation . If you can tell a compiler that it is dealing with a permutation, the penalty is lessened in some cases. Even so, there is insult being added to injury. Indirect references require more memory activity than direct references, and this slows you down.

Pointer ambiguity in numerical c applications

FORTRAN compilers depend on programmers to observe aliasing rules. That is, programmers are not supposed to modify locations through pointers that may be aliases of one another. They can become aliases in several ways, such as when two dummy arguments receive pointers to the same storage locations:


CALL BOB (A,A) ...END SUBROUTINE BOB (X,Y) ← X,Y become aliases

C compilers don’t enjoy the same restrictions on aliasing. In fact, there are cases where aliasing could be desirable. Additionally, C is blessed with pointer types, increasing the opportunities for aliasing to occur. This means that a C compiler has to approach operations through pointers more conservatively than a FORTRAN compiler would. Let’s look at some examples to see why.

The following loop nest looks like a FORTRAN loop cast in C. The arrays are declared or allocated all at once at the top of the routine, and the starting address and leading dimensions are visible to the compiler. This is important because it means that the storage relationship between the array elements is well known. Hence, you could expect good performance:


#define N ... double *a[N][N], c[N][N], d;for (i=0; i<N; i++) for (j=0; j<N; j++) a[i][j] = a[i][j] + c[j][i] * d;

Now imagine what happens if you allocate the rows dynamically. This makes the address calculations more complicated. The loop nest hasn’t changed; however, there is no guaranteed stride that can get you from one row to the next. This is because the storage relationship between the rows is unknown:


#define N ... double *a[N], *c[N], d;for (i=0; i<N; i++) { a[i]= (double *) malloc (N*sizeof(double)); c[i]= (double *) malloc (N*sizeof(double)); }for (i=0; i<N; i++) for (j=0; j<N; j++) a[i][j] = a[i][j] + c[j][i] * d;

In fact, your compiler knows even less than you might expect about the storage relationship. For instance, how can it be sure that references to a and c aren’t aliases? It may be obvious to you that they’re not. You might point out that malloc never overlaps storage. But the compiler isn’t free to assume that. Who knows? You may be substituting your own version of malloc !

Let’s look at a different example, where storage is allocated all at once, though the declarations are not visible to all routines that are using it. The following subroutine bob performs the same computation as our previous example. However, because the compiler can’t see the declarations for a and c (they’re in the main routine), it doesn’t have enough information to be able to overlap memory references from successive iterations; the references could be aliases:


#define N... main(){ double a[N][N], c[N][N], d;... bob (a,c,d,N);} bob (double *a,double *c,double d,int n){ int i,j;double *ap, *cp; for (i=0;i<n;i++) { ap = a + (i*n);cp = c + i; for (j=0; j<n; j++) *(ap+j) = *(ap+j) + *(cp+(j*n)) * d;} }

To get the best performance, make available to the compiler as many details about the size and shape of your data structures as possible. Pointers, whether in the form of formal arguments to a subroutine or explicitly declared, can hide important facts about how you are using memory. The more information the compiler has, the more it can overlap memory references. This information can come from compiler directives or from making declarations visible in the routines where performance is most critical.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask