<< Chapter < Page Chapter >> Page >
In this project you will create an oscillator whose output tracks a specified amplitude and frequency trajectory. With this general-purpose oscillator you can define multiple frequency/amplitude trajectories that can be combined to create complex sounds. In particular, you will design the sound so that its spectrogram makes a recognizable picture!
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Objective

Additive synthesis builds up complex sounds from simple sounds (sinusoids). Additive synthesis implies more than just doing Fourier series, though: each sinusoidal component is assigned its own frequency and amplitude trajectory (resulting in a partial), so complex, time-varying sounds can be generated by summing these partials together.

In this project you will create an oscillator whose output tracks a specified amplitude and frequency trajectory. With this general-purpose oscillator you can define multiple frequency/amplitude trajectories that can be combined to create complex sounds. In particular, you will design the sound so that its spectrogram makes a recognizable picture!

Prerequisite modules

If you have not done so already, please study the prerequisite modules Additive Synthesis Concepts and Additive Synthesis Techniques . If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: general-purpose sinusoidal oscillator

Develop a subVI called gposc.vi that accepts a frequency trajectory (in Hz), an amplitude trajectory, and a sampling frequency (in Hz) to produce a sinusoidal output whose amplitude and frequency tracks the two input trajectories, respectively. The two trajectories are arrays that should be of the same length.

Demonstrate that your oscillator works properly by showing the output of your VI (spectrogram and .wav file) for the amplitude and frequency trajectories produced by a LabVIEW MathScript node that contains the following code:

ff=[linspace(200,1600,2.5*fs) ... linspace(1600,800,1.5*fs)]; aa=[linspace(1,0,3*fs) ...linspace(0,0.75,fs)];

where fs is the sampling frequency in Hz, ff is the output frequency trajectory (also in Hz), and aa is the amplitude trajectory (between 0 and 1). Use a sampling frequency of 5 kHz when you make the spectrogram and soundfile.

Plot the trajectories ff and aa and compare to your spectrogram.

Remember, the instantaneous frequency of your general-purpose sinusoidal oscillator is related to the time-varying phase of the sine function. That is, if the sinusoidal signal is defined as y ( t ) = sin ( θ ( t ) ) , then the instantaneous frequency of the sinusoid is ω ( t ) = d θ ( t ) / d t radians per second. Because you are given a frequency trajectory that relates to ω ( t ) , which mathematical operation yields the phase function θ ( t ) ?

Here's a LabVIEW coding tip: You will find the built-in VI "Mathematics | Integ and Diff | Integral x(t)" to be essential for this part of the project.

Part 2: frequency trajectory design

You can make your spectrogram art project sound more musically appealing when you design the frequency trajectories to account for frequency perception ; refer to Perception of Sound for a detailed treatment of this subject. Design your trajectories in "log space" (using logarithmic graph paper) and then convert to actual frequency just before invoking your general-purpose sinusoidal oscillator.

Review Additive Synthesis Techniques to learn how to create your frequency trajectories for this part of the project.

Part 3: amplitude trajectory design

The discussion of Part 2 pertains to the design of your amplitude trajectories, as well. Perception of intensity (loudness) is also logarithmic (refer to Perception of Sound and review the section on intensity perception). In this part you will design your amplitude trajectory in "log space," but now using traditional decibels (dB). An intensity trajectory can be converted to amplitude by "undoing" the equation that relates a value to the same value expressed in decibels: X dB = 20 log 10 ( X ) .

Experiment with your spectrogram display device to learn the intensity-to-color mapping. Specifically, you could produce a sinusoidal signal with increasing intensity values over time, then match up the plotted colors to the known intensity values.

Part 4: spectrogram art

Design a spectrogram picture using multiple frequency/amplitude trajectories. Include your paper-and-pencil drawing of the spectrogram as part of your deliverables. Use your creativity to make an interesting and recognizable picture.

Better designs will go beyond straight lines to include curved lines such as arcs, exponentials, parabolas, sinusoids, polynomials, spline interpolations, and so on.

Include a .wav file of the sound associated with your spectrogram picture.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview (all modules). OpenStax CNX. Jan 05, 2010 Download for free at http://cnx.org/content/col10507/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview (all modules)' conversation and receive update notifications?

Ask