<< Chapter < Page | Chapter >> Page > |
Let’s begin with an assumption, which will be discussed in more detail later, that José can measure his own utility with something called utils . (It is important to note that you cannot make comparisons between the utils of individuals; if one person gets 20 utils from a cup of coffee and another gets 10 utils, this does not mean than the first person gets more enjoyment from the coffee than the other or that they enjoy the coffee twice as much.) [link] shows how José’s utility is connected with his consumption of T-shirts or movies. The first column of the table shows the quantity of T-shirts consumed. The second column shows the total utility, or total amount of satisfaction, that José receives from consuming that number of T-shirts. The most common pattern of total utility, as shown here, is that consuming additional goods leads to greater total utility, but at a decreasing rate. The third column shows marginal utility , which is the additional utility provided by one additional unit of consumption. This equation for marginal utility is:
Notice that marginal utility diminishes as additional units are consumed, which means that each subsequent unit of a good consumed provides less additional utility. For example, the first T-shirt José picks is his favorite and it gives him an addition of 22 utils. The fourth T-shirt is just to something to wear when all his other clothes are in the wash and yields only 18 additional utils. This is an example of the law of diminishing marginal utility , which holds that the additional utility decreases with each unit added.
The rest of [link] shows the quantity of movies that José attends, and his total and marginal utility from seeing each movie. Total utility follows the expected pattern: it increases as the number of movies seen rises. Marginal utility also follows the expected pattern: each additional movie brings a smaller gain in utility than the previous one. The first movie José attends is the one he wanted to see the most, and thus provides him with the highest level of utility or satisfaction. The fifth movie he attends is just to kill time. Notice that total utility is also the sum of the marginal utilities. Read the next Work It Out feature for instructions on how to calculate total utility.
T-Shirts (Quantity) | Total Utility | Marginal Utility | Movies (Quantity) | Total Utility | Marginal Utility |
---|---|---|---|---|---|
1 | 22 | 22 | 1 | 16 | 16 |
2 | 43 | 21 | 2 | 31 | 15 |
3 | 63 | 20 | 3 | 45 | 14 |
4 | 81 | 18 | 4 | 58 | 13 |
5 | 97 | 16 | 5 | 70 | 12 |
6 | 111 | 14 | 6 | 81 | 11 |
7 | 123 | 12 | 7 | 91 | 10 |
8 | 133 | 10 | 8 | 100 | 9 |
[link] looks at each point on the budget constraint in [link] , and adds up José’s total utility for five possible combinations of T-shirts and movies.
Point | T-Shirts | Movies | Total Utility |
---|---|---|---|
P | 4 | 0 | 81 + 0 = 81 |
Q | 3 | 2 | 63 + 31 = 94 |
R | 2 | 4 | 43 + 58 = 101 |
S | 1 | 6 | 22 + 81 = 103 |
T | 0 | 8 | 0 + 100 = 100 |
Let’s look at how José makes his decision in more detail.
Step 1. Observe that, at point Q (for example), José consumes three T-shirts and two movies.
Step 2. Look at [link] . You can see from the fourth row/second column that three T-shirts are worth 63 utils. Similarly, the second row/fifth column shows that two movies are worth 31 utils.
Step 3. From this information, you can calculate that point Q has a total utility of 94 (63 + 31).
Step 4. You can repeat the same calculations for each point on [link] , in which the total utility numbers are shown in the last column.
Notification Switch
Would you like to follow the 'Openstax microeconomics in ten weeks' conversation and receive update notifications?