<< Chapter < Page Chapter >> Page >
This module provides an overview of applications of compressive sensing in the context of distributed sensor networks.

Sparse and compressible signals are present in many sensor network applications, such as environmental monitoring, signal field recording and vehicle surveillance. Compressive sensing (CS) has many properties that make it attractive in this settings, such as its low complexity sensing and compression, its universality and its graceful degradation. CS is robust to noise, and allows querying more nodes to obey further detail on signals as they become interesting. Packet drops also do not harm the network nearly as much as many other protocols, only providing a marginal loss for each measurement not obtained by the receiver. As the network becomes more congested, data can be scaled back smoothly.

Thus CS can enable the design of generic compressive sensors that perform random or incoherent projections.

Several methods for using CS in sensor networks have been proposed. Decentralized methods pass data throughout the network, from neighbor to neighbor, and allow the decoder to probe any subset of nodes. In contrast, centralized methods require all information to be transmitted to a centralized data center, but reduce either the amount of information that must be transmitted or the power required to do so. We briefly summarize each class below.

Decentralized algorithms

Decentralized algorithms enable the calculation of compressive measurements at each sensor in the network, thus being useful for applications where monitoring agents traverse the network during operation.

Randomized gossiping

In randomized gossiping  [link] , each sensor communicates M random projection of its data sample to a random set of nodes, in each stage aggregating and forwarding the observations received to a new set of random nodes. In essence, a spatial dot product is being performed as each node collects and aggregates information, compiling a sum of the weighted samples to obtain M CS measurements which becomes more accurate as more rounds of random gossiping occur. To recover the data, a basis that provides data sparsity (or at least compressibility) is required, as well as the random projections used. However, this information does not need to be known while the data is being passed.

The method can also be applied when each sensor observes a compressible signal. In this case, each sensor computes multiple random projections of the data and transmits them using randomized gossiping to the rest of the network. A potential drawback of this technique is the amount of storage required per sensor, as it could be considerable for large networks .In this case, each sensor can store the data from only a subset of the sensors, where each group of sensors of a certain size will be known to contain CS measurements for all the data in the network. To maintain a constant error as the network size grows, the number of transmissions becomes Θ ( k M n 2 ) , where k represents the number of groups in which the data is partitioned, M is the number of values desired from each sensor and n are the number of nodes in the network. The results can be improved by using geographic gossiping algorithms  [link] .

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask