<< Chapter < Page Chapter >> Page >

In chemistry and biochemistry, one calorie (spelled with a lowercase c) is defined as the energy (or heat transfer) required to raise the temperature of one gram of pure water by one degree Celsius. Nutritionists and weight-watchers tend to use the dietary calorie, which is frequently called a Calorie (spelled with a capital C). One food Calorie is the energy needed to raise the temperature of one kilogram of water by one degree Celsius. This means that one dietary Calorie is equal to one kilocalorie for the chemist, and one must be careful to avoid confusion between the two.

Again, consider the internal energy the body has lost. There are three places this internal energy can go—to heat transfer, to doing work, and to stored fat (a tiny fraction also goes to cell repair and growth). Heat transfer and doing work take internal energy out of the body, and food puts it back. If you eat just the right amount of food, then your average internal energy remains constant. Whatever you lose to heat transfer and doing work is replaced by food, so that, in the long run, Δ U = 0 size 12{ΔU=0} {} . If you overeat repeatedly, then Δ U size 12{ΔU} {} is always positive, and your body stores this extra internal energy as fat. The reverse is true if you eat too little. If Δ U size 12{ΔU} {} is negative for a few days, then the body metabolizes its own fat to maintain body temperature and do work that takes energy from the body. This process is how dieting produces weight loss.

Life is not always this simple, as any dieter knows. The body stores fat or metabolizes it only if energy intake changes for a period of several days. Once you have been on a major diet, the next one is less successful because your body alters the way it responds to low energy intake. Your basal metabolic rate (BMR) is the rate at which food is converted into heat transfer and work done while the body is at complete rest. The body adjusts its basal metabolic rate to partially compensate for over-eating or under-eating. The body will decrease the metabolic rate rather than eliminate its own fat to replace lost food intake. You will chill more easily and feel less energetic as a result of the lower metabolic rate, and you will not lose weight as fast as before. Exercise helps to lose weight, because it produces both heat transfer from your body and work, and raises your metabolic rate even when you are at rest. Weight loss is also aided by the quite low efficiency of the body in converting internal energy to work, so that the loss of internal energy resulting from doing work is much greater than the work done. It should be noted, however, that living systems are not in thermal equilibrium.

The body provides us with an excellent indication that many thermodynamic processes are irreversible . An irreversible process can go in one direction but not the reverse, under a given set of conditions. For example, although body fat can be converted to do work and produce heat transfer, work done on the body and heat transfer into it cannot be converted to body fat. Otherwise, we could skip lunch by sunning ourselves or by walking down stairs. Another example of an irreversible thermodynamic process is photosynthesis. This process is the intake of one form of energy—light—by plants and its conversion to chemical potential energy. Both applications of the first law of thermodynamics are illustrated in [link] . One great advantage of conservation laws such as the first law of thermodynamics is that they accurately describe the beginning and ending points of complex processes, such as metabolism and photosynthesis, without regard to the complications in between. [link] presents a summary of terms relevant to the first law of thermodynamics.

Part a of the figure is a pictorial representation of metabolism in a human body. The food is shown to enter the body as shown by a bold arrow toward the body. Work W and heat Q leave the body as shown by bold arrows pointing outward from the body. Delta U is shown as the stored food energy. Part b of the figure shows the metabolism in plants .The heat from the sunlight is shown to fall on a plant represented as Q in. The heat given out by the plant is shown as Q out by an arrow pointing away from the plant.
(a) The first law of thermodynamics applied to metabolism. Heat transferred out of the body ( Q size 12{Q} {} ) and work done by the body ( W size 12{W} {} ) remove internal energy, while food intake replaces it. (Food intake may be considered as work done on the body.) (b) Plants convert part of the radiant heat transfer in sunlight to stored chemical energy, a process called photosynthesis.
Summary of terms for the first law of thermodynamics, ΔU=Q−W
Term Definition
U size 12{U} {} Internal energy—the sum of the kinetic and potential energies of a system’s atoms and molecules. Can be divided into many subcategories, such as thermal and chemical energy. Depends only on the state of a system (such as its P size 12{P} {} , V size 12{V} {} , and T size 12{T} {} ), not on how the energy entered the system. Change in internal energy is path independent.
Q size 12{Q} {} Heat—energy transferred because of a temperature difference. Characterized by random molecular motion. Highly dependent on path. Q size 12{Q} {} entering a system is positive.
W size 12{W} {} Work—energy transferred by a force moving through a distance. An organized, orderly process. Path dependent. W size 12{W} {} done by a system (either against an external force or to increase the volume of the system) is positive.

Section summary

  • The first law of thermodynamics is given as Δ U = Q W size 12{ΔU=Q - W} {} , where Δ U size 12{ΔU} {} is the change in internal energy of a system, Q size 12{Q} {} is the net heat transfer (the sum of all heat transfer into and out of the system), and W size 12{W} {} is the net work done (the sum of all work done on or by the system).
  • Both Q size 12{Q} {} and W size 12{W} {} are energy in transit; only Δ U size 12{ΔU} {} represents an independent quantity capable of being stored.
  • The internal energy U size 12{U} {} of a system depends only on the state of the system and not how it reached that state.
  • Metabolism of living organisms, and photosynthesis of plants, are specialized types of heat transfer, doing work, and internal energy of systems.

Conceptual questions

Describe the photo of the tea kettle at the beginning of this section in terms of heat transfer, work done, and internal energy. How is heat being transferred? What is the work done and what is doing it? How does the kettle maintain its internal energy?

The first law of thermodynamics and the conservation of energy are clearly related. How do they differ in the types of energy considered?

Heat transfer Q size 12{Q} {} and work done W size 12{W} {} are always energy in transit, whereas internal energy U size 12{U} {} is energy stored in a system. Give an example of each type of energy, and state specifically how it is either in transit or resides in a system.

How do heat transfer and internal energy differ? In particular, which can be stored as such in a system and which cannot?

If you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?

Give an explanation of how food energy (calories) can be viewed as molecular potential energy (consistent with the atomic and molecular definition of internal energy).

Identify the type of energy transferred to your body in each of the following as either internal energy, heat transfer, or doing work: (a) basking in sunlight; (b) eating food; (c) riding an elevator to a higher floor.

Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask