<< Chapter < Page Chapter >> Page >
This module describes the application of compressive sensing to the design of a novel imaging architecture called the "single-pixel camera".

Architecture

Several hardware architectures have been proposed that apply the theory of compressive sensing (CS) in an imaging setting  [link] , [link] , [link] . We will focus on the so-called single-pixel camera   [link] , [link] , [link] , [link] , [link] . The single-pixel camera is an optical computer that sequentially measures the inner products y [ j ] = x , φ j between an N -pixel sampled version of the incident light-field from the scene under view (denoted by x ) and a set of N -pixel test functions { φ j } j = 1 M . The architecture is illustrated in [link] , and an aerial view of the camera in the lab is shown in [link] . As shown in these figures, the light-field is focused by a lens (Lens 1 in [link] ) not onto a CCD or CMOS sampling array but rather onto a spatial light modulator (SLM). An SLM modulates the intensity of a light beam according to a control signal. A simple example of a transmissive SLM that either passes or blocks parts of the beam is an overhead transparency. Another example is a liquid crystal display (LCD) projector.

Single-pixel camera block diagram. Incident light-field (corresponding to the desired image x ) is reflected off a digital micromirror device (DMD) array whose mirror orientations are modulated according to the pseudorandom pattern φ j supplied by a random number generator. Each different mirror pattern produces a voltage at the single photodiode that corresponds to one measurement y [ j ] .

The Texas Instruments (TI) digital micromirror device (DMD) is a reflective SLM that selectively redirects parts of the light beam. The DMD consists of an array of bacterium-sized, electrostatically actuated micro-mirrors, where each mirror in the array is suspended above an individual static random access memory (SRAM) cell. Each mirror rotates about a hinge and can be positioned in one of two states ( ± 10 degrees from horizontal) according to which bit is loaded into the SRAM cell; thus light falling on the DMD can be reflected in two directions depending on the orientation of the mirrors.

Each element of the SLM corresponds to a particular element of φ j (and its corresponding pixel in x ). For a given φ j , we can orient the corresponding element of the SLM either towards (corresponding to a 1 at that element of φ j ) or away from (corresponding to a 0 at that element of φ j ) a second lens (Lens 2 in [link] ). This second lens collects the reflected light and focuses it onto a single photon detector (the single pixel) that integrates the product of x and φ j to compute the measurement y [ j ] = x , φ j as its output voltage. This voltage is then digitized by an A/D converter. Values of φ j between 0 and 1 can be obtained by dithering the mirrors back and forth during the photodiode integration time. By reshaping x into a column vector and the φ j into row vectors, we can thus model this system as computing the product y = Φ x , where each row of Φ corresponds to a φ j . To compute randomized measurements, we set the mirror orientations φ j randomly using a pseudorandom number generator, measure y [ j ] , and then repeat the process M times to obtain the measurement vector y .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask