<< Chapter < Page Chapter >> Page >
In this section you will:
  • Solve equations involving rational exponents.
  • Solve equations using factoring.
  • Solve radical equations.
  • Solve absolute value equations.
  • Solve other types of equations.

We have solved linear equations, rational equations, and quadratic equations using several methods. However, there are many other types of equations, and we will investigate a few more types in this section. We will look at equations involving rational exponents, polynomial equations, radical equations, absolute value equations, equations in quadratic form, and some rational equations that can be transformed into quadratics. Solving any equation, however, employs the same basic algebraic rules. We will learn some new techniques as they apply to certain equations, but the algebra never changes.

Solving equations involving rational exponents

Rational exponents are exponents that are fractions, where the numerator is a power and the denominator is a root. For example, 16 1 2 is another way of writing 16 ; 8 1 3 is another way of writing 8 3 . The ability to work with rational exponents is a useful skill, as it is highly applicable in calculus.

We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation to the reciprocal of the exponent. The reason we raise the equation to the reciprocal of the exponent is because we want to eliminate the exponent on the variable term, and a number multiplied by its reciprocal equals 1. For example, 2 3 ( 3 2 ) = 1 , 3 ( 1 3 ) = 1 , and so on.

Rational exponents

A rational exponent indicates a power in the numerator and a root in the denominator. There are multiple ways of writing an expression, a variable, or a number with a rational exponent:

a m n = ( a 1 n ) m = ( a m ) 1 n = a m n = ( a n ) m

Evaluating a number raised to a rational exponent

Evaluate 8 2 3 .

Whether we take the root first or the power first depends on the number. It is easy to find the cube root of 8, so rewrite 8 2 3 as ( 8 1 3 ) 2 .

( 8 1 3 ) 2 = ( 2 ) 2 = 4

Evaluate 64 1 3 .

1 4

Solve the equation including a variable raised to a rational exponent

Solve the equation in which a variable is raised to a rational exponent: x 5 4 = 32.

The way to remove the exponent on x is by raising both sides of the equation to a power that is the reciprocal of 5 4 , which is 4 5 .

x 5 4 = 32 ( x 5 4 ) 4 5 = ( 32 ) 4 5 x = ( 2 ) 4 The fifth root of 32 is 2. = 16

Solve the equation x 3 2 = 125.

25

Solving an equation involving rational exponents and factoring

Solve 3 x 3 4 = x 1 2 .

This equation involves rational exponents as well as factoring rational exponents. Let us take this one step at a time. First, put the variable terms on one side of the equal sign and set the equation equal to zero.

3 x 3 4 ( x 1 2 ) = x 1 2 ( x 1 2 ) 3 x 3 4 x 1 2 = 0

Now, it looks like we should factor the left side, but what do we factor out? We can always factor the term with the lowest exponent. Rewrite x 1 2 as x 2 4 . Then, factor out x 2 4 from both terms on the left.

3 x 3 4 x 2 4 = 0 x 2 4 ( 3 x 1 4 1 ) = 0

Where did x 1 4 come from? Remember, when we multiply two numbers with the same base, we add the exponents. Therefore, if we multiply x 2 4 back in using the distributive property, we get the expression we had before the factoring, which is what should happen. We need an exponent such that when added to 2 4 equals 3 4 . Thus, the exponent on x in the parentheses is 1 4 .

Let us continue. Now we have two factors and can use the zero factor theorem.

x 2 4 ( 3 x 1 4 1 ) = 0 x 2 4 = 0 x = 0 3 x 1 4 1 = 0 3 x 1 4 = 1 x 1 4 = 1 3 Divide both sides by 3 . ( x 1 4 ) 4 = ( 1 3 ) 4 Raise both sides to the reciprocal of  1 4 . x = 1 81

The two solutions are 0 and 1 81 .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Selected topics in algebra. OpenStax CNX. Sep 02, 2015 Download for free at http://legacy.cnx.org/content/col11877/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Selected topics in algebra' conversation and receive update notifications?

Ask