<< Chapter < Page Chapter >> Page >
A basic analysis of wireless channels and their transfer characteristics.

Wireless channels exploit the prediction made by Maxwell's equation that electromagnetic fields propagate in free spacelike light. When a voltage is applied to an antenna, it creates an electromagnetic field that propagates in all directions(although antenna geometry affects how much power flows in any given direction) that induces electric currents in thereceiver's antenna. Antenna geometry determines how energetic a field a voltage of a given frequency creates. In general terms,the dominant factor is the relation of the antenna's size to the field's wavelength. The fundamental equation relating frequencyand wavelength for a propagating wave is λ f c Thus, wavelength and frequency are inversely related: High frequency corresponds to small wavelengths. For example, a1 MHz electromagnetic field has a wavelength of 300 m. Antennas having a size or distance from the ground comparable tothe wavelength radiate fields most efficiently. Consequently, the lower the frequency the bigger the antenna must be. Becausemost information signals are baseband signals, having spectral energy at low frequencies, they must be modulated to higherfrequencies to be transmitted over wireless channels.

For most antenna-based wireless systems, how the signal diminishes as the receiver moves further from the transmitterderives by considering how radiated power changes with distance from the transmitting antenna. An antenna radiates a givenamount of power into free space, and ideally this power propagates without loss in all directions. Considering a spherecentered at the transmitter, the total power, which is found by integrating the radiated power over the surface of the sphere,must be constant regardless of the sphere's radius. This requirement results from the conservation of energy. Thus, if p d represents the power integrated with respect to direction at a distance d from the antenna, the total power will be p d 4 d 2 . For this quantity to be a constant, we must have p d 1 d 2 which means that the received signal amplitude A R must be proportional to the transmitter's amplitude A T and inversely related to distance from the transmitter.

A R k A T d
for some value of the constant k . Thus, the further from the transmitter the receiver is located,the weaker the received signal. Whereas the attenuation found in wireline channels can be controlled by physical parametersand choice of transmission frequency, the inverse-distance attenuation found in wireless channels persists across allfrequencies.

Why don't signals attenuate according to the inverse-square law in a conductor? What is the difference between the wirelineand wireless cases?

As shown previously , voltages and currents in a wireline channel, which is modeled as a transmission linehaving resistance, capacitance and inductance, decay exponentially with distance. The inverse-square law governsfree-space propagation because such propagation is lossless, with the inverse-square law a consequence of theconservation of power. The exponential decay of wireline channels occurs because they have losses and some filtering.

Got questions? Get instant answers now!

The speed of propagation is governed by the dielectric constant μ 0 and magnetic permeability ε 0 of free space.

c 1 μ 0 ε 0 3 8 m/s
Known familiarly as the speed of light, it sets an upper limit on how fast signals can propagate from one place to another.Because signals travel at a finite speed, a receiver senses a transmitted signal only after a time delay inversely related tothe propagation speed: Δ t d c At the speed of light, a signal travels across the United States in 16 ms, a reasonably small time delay. If a lossless(zero space constant) coaxial cable connected the East and West coasts, this delay would be two to three times longer because ofthe slower propagation speed.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask