<< Chapter < Page Chapter >> Page >
A basic analysis of wireless channels and their transfer characteristics.

Wireless channels exploit the prediction made by Maxwell's equation that electromagnetic fields propagate in free spacelike light. When a voltage is applied to an antenna, it creates an electromagnetic field that propagates in all directions(although antenna geometry affects how much power flows in any given direction) that induces electric currents in thereceiver's antenna. Antenna geometry determines how energetic a field a voltage of a given frequency creates. In general terms,the dominant factor is the relation of the antenna's size to the field's wavelength. The fundamental equation relating frequencyand wavelength for a propagating wave is λ f c Thus, wavelength and frequency are inversely related: High frequency corresponds to small wavelengths. For example, a1 MHz electromagnetic field has a wavelength of 300 m. Antennas having a size or distance from the ground comparable tothe wavelength radiate fields most efficiently. Consequently, the lower the frequency the bigger the antenna must be. Becausemost information signals are baseband signals, having spectral energy at low frequencies, they must be modulated to higherfrequencies to be transmitted over wireless channels.

For most antenna-based wireless systems, how the signal diminishes as the receiver moves further from the transmitterderives by considering how radiated power changes with distance from the transmitting antenna. An antenna radiates a givenamount of power into free space, and ideally this power propagates without loss in all directions. Considering a spherecentered at the transmitter, the total power, which is found by integrating the radiated power over the surface of the sphere,must be constant regardless of the sphere's radius. This requirement results from the conservation of energy. Thus, if p d represents the power integrated with respect to direction at a distance d from the antenna, the total power will be p d 4 d 2 . For this quantity to be a constant, we must have p d 1 d 2 which means that the received signal amplitude A R must be proportional to the transmitter's amplitude A T and inversely related to distance from the transmitter.

A R k A T d
for some value of the constant k . Thus, the further from the transmitter the receiver is located,the weaker the received signal. Whereas the attenuation found in wireline channels can be controlled by physical parametersand choice of transmission frequency, the inverse-distance attenuation found in wireless channels persists across allfrequencies.

Why don't signals attenuate according to the inverse-square law in a conductor? What is the difference between the wirelineand wireless cases?

As shown previously , voltages and currents in a wireline channel, which is modeled as a transmission linehaving resistance, capacitance and inductance, decay exponentially with distance. The inverse-square law governsfree-space propagation because such propagation is lossless, with the inverse-square law a consequence of theconservation of power. The exponential decay of wireline channels occurs because they have losses and some filtering.

Got questions? Get instant answers now!

The speed of propagation is governed by the dielectric constant μ 0 and magnetic permeability ε 0 of free space.

c 1 μ 0 ε 0 3 8 m/s
Known familiarly as the speed of light, it sets an upper limit on how fast signals can propagate from one place to another.Because signals travel at a finite speed, a receiver senses a transmitted signal only after a time delay inversely related tothe propagation speed: Δ t d c At the speed of light, a signal travels across the United States in 16 ms, a reasonably small time delay. If a lossless(zero space constant) coaxial cable connected the East and West coasts, this delay would be two to three times longer because ofthe slower propagation speed.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask