<< Chapter < Page Chapter >> Page >
C F · d r = C f · d r = f ( r ( b ) ) f ( r ( a ) ) = f ( r ( b ) ) f ( r ( b ) ) = 0.

Recall that the reason a conservative vector field F is called “conservative” is because such vector fields model forces in which energy is conserved. We have shown gravity to be an example of such a force. If we think of vector field F in integral C F · d r as a gravitational field, then the equation C F · d r = 0 follows. If a particle travels along a path that starts and ends at the same place, then the work done by gravity on the particle is zero.

The second important consequence of the Fundamental Theorem for Line Integrals is that line integrals of conservative vector fields are independent of path—meaning, they depend only on the endpoints of the given curve, and do not depend on the path between the endpoints.

Definition

Let F be a vector field with domain D . The vector field F is independent of path (or path independent ) if C 1 F · d r = C 2 F · d r for any paths C 1 and C 2 in D with the same initial and terminal points.

The second consequence is stated formally in the following theorem.

Path independence of conservative fields

If F is a conservative vector field, then F is independent of path.

Proof

Let D denote the domain of F and let C 1 and C 2 be two paths in D with the same initial and terminal points ( [link] ). Call the initial point P 1 and the terminal point P 2 . Since F is conservative, there is a potential function f for F . By the Fundamental Theorem for Line Integrals,

C 1 F · d r = f ( P 2 ) f ( P 1 ) = C 2 F · d r .

Therefore, C 1 F · d r = C 2 F · d r and F is independent of path.

A vector field in two dimensions. The arrows are shorter the closer to the x axis and line x=1.5 they become. The arrows point up, converging around x=1.5 in quadrant 1. That line is approached from the left and from the right. Below, in quadrant 4, the arrows in the rough interval [1,2.5] curve out, away from the given line x=1.5, but do turn back in and converge to x=1.5 above the x axis. Outside of that interval, the arrows go to the left and right horizontally for x values less than 1 and greater than 2.5, respectively. A line is drawn from P_1 at the origin to P_2 at (3,.75) and labeled C_2. C_1 is a simple curve that connects the given endpoints above C_2, C_3 is a simple curve that connects the given endpoints below C_2.
The vector field is conservative, and therefore independent of path.

To visualize what independence of path means, imagine three hikers climbing from base camp to the top of a mountain. Hiker 1 takes a steep route directly from camp to the top. Hiker 2 takes a winding route that is not steep from camp to the top. Hiker 3 starts by taking the steep route but halfway to the top decides it is too difficult for him. Therefore he returns to camp and takes the non-steep path to the top. All three hikers are traveling along paths in a gravitational field. Since gravity is a force in which energy is conserved, the gravitational field is conservative. By independence of path, the total amount of work done by gravity on each of the hikers is the same because they all started in the same place and ended in the same place. The work done by the hikers includes other factors such as friction and muscle movement, so the total amount of energy each one expended is not the same, but the net energy expended against gravity is the same for all three hikers.

We have shown that if F is conservative, then F is independent of path. It turns out that if the domain of F is open and connected, then the converse is also true. That is, if F is independent of path and the domain of F is open and connected, then F is conservative. Therefore, the set of conservative vector fields on open and connected domains is precisely the set of vector fields independent of path.

The path independence test for conservative fields

If F is a continuous vector field that is independent of path and the domain D of F is open and connected, then F is conservative.

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask