<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes
  • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes

In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes. Moreover, protists that exhibit similar morphological features may have evolved analogous structures because of similar selective pressures—rather than because of recent common ancestry. This phenomenon, called convergent evolution, is one reason why protist classification is so challenging. The emerging classification scheme groups the entire domain Eukaryota into six “supergroups” that contain all of the protists as well as animals, plants, and fungi that evolved from a common ancestor ( [link] ). The supergroups are believed to be monophyletic, meaning that all organisms within each supergroup are believed to have evolved from a single common ancestor, and thus all members are most closely related to each other than to organisms outside that group. There is still evidence lacking for the monophyly of some groups.

The chart shows the relationship of eukaryotic supergroups, which all arose from a common eukaryotic ancestor. The six groups are Excavata, Chromalveolata, Rhizaria, Archaeplastida, Amoebozoa, and Opisthokonta. Excavata includes the kingdoms diplomonads, parabasalids, and euglenozoans. Chromalveolata includes the kingdoms dinoflagellates, apicomplexans, and ciliates, all within the alveolate lineage, and the diatoms, golden algae, brown algae, and oomycetes, all within the stramenopile lineage. Rhizaria includes cercozoans, forams, and radiolarians. Archaeplastida includes red algae and two kingdoms of green algae, chlorophytes and charophytes, and land plants. Amoebozoa includes slime molds, gymnamoebas, and entamoebas. Opisthokonta includes nucleariids, fungi, choanoflagellates, and animals.
This diagram shows a proposed classification of the domain Eukara. Currently, the domain Eukarya is divided into six supergroups. Within each supergroup are multiple kingdoms. Dotted lines indicate suggested evolutionary relationships that remain under debate.

The classification of eukaryotes is still in flux, and the six supergroups may be modified or replaced by a more appropriate hierarchy as genetic, morphological, and ecological data accumulate. Keep in mind that the classification scheme presented here is just one of several hypotheses, and the true evolutionary relationships are still to be determined. When learning about protists, it is helpful to focus less on the nomenclature and more on the commonalities and differences that define the groups themselves.

Excavata

Many of the protist species classified into the supergroup Excavata are asymmetrical, single-celled organisms with a feeding groove “excavated” from one side. This supergroup includes heterotrophic predators, photosynthetic species, and parasites. Its subgroups are the diplomonads, parabasalids, and euglenozoans.

Diplomonads

Among the Excavata are the diplomonads, which include the intestinal parasite, Giardia lamblia ( [link] ). Until recently, these protists were believed to lack mitochondria. Mitochondrial remnant organelles, called mitosomes , have since been identified in diplomonads, but these mitosomes are essentially nonfunctional. Diplomonads exist in anaerobic environments and use alternative pathways, such as glycolysis, to generate energy. Each diplomonad cell has two identical nuclei and uses several flagella for locomotion.

The micrograph shows Giardia, which is shaped like a corn kernel and about 12 to 15 microns in length. Three whip-like flagella protrude from the middle of the parasite, and a whip-like tail protrudes from the narrow back end.
The mammalian intestinal parasite Giardia lamblia , visualized here using scanning electron microscopy, is a waterborne protist that causes severe diarrhea when ingested. (credit: modification of work by Janice Carr, CDC; scale-bar data from Matt Russell)

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is sexual reproductive system
James
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Bmcc 102 - concepts of biology. OpenStax CNX. Aug 11, 2015 Download for free at https://legacy.cnx.org/content/col11856/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bmcc 102 - concepts of biology' conversation and receive update notifications?

Ask