<< Chapter < Page Chapter >> Page >

Verspreiding van data

Simmetries en skewe data

Die vorm van 'n data stel is belangrik om te weet.

Vorm van 'n data stel

Hierdie beskryf hoe die data versprei is relatief tot die gemiddelde en die mediaan.

  • Simmetriese data is gebalanseer op beide kante van die mediaan.
  • Data wat skeef is, is versprei op een kant meer as die ander. Dit kan skeef na links of skeef na regs wees.

Verhouding tussen gemiddelde, mediaan en modus

Die verhouding van die gemiddelde, mediaan en modus ten opsigte van mekaar kan inligting verskaf oor die relatiewe vorm van die data verspreiding. As die gemiddelde, mediaan en modus min of meer dieselfde is, kan die verspreiding aangeneem word as simmetries. Met die gemiddelde en mediaan bekend, kan die volgende afgelei word:

  • (gemiddelde - mediaan) 0 dan is die data simmetries
  • (gemiddelde - mediaan) > 0 dan is die data positief skeef (Skeef na regs). Dit beteken dat die mediaan naby is aan die begin van die data stel.
  • (gemiddelde - mediaan) < 0 dan is die data negatief skeef (skeef na links). Dit beteken dat die mediaan naby is aan die einde van die data stel.

Verspreiding van data

  1. Drie stelle van 12 leerlinge elk het 'n toets geskryf en se punte is aangeteken. Die toets het uit 50 getel. Gebruik die gegewe data om die volgende vrae te beantwoord.
    Kumulatiewe frekwensies vir data stel 2.
    Stel 1 Stel 2 Stel 3
    25 32 43
    47 34 47
    15 35 16
    17 32 43
    16 25 38
    26 16 44
    24 38 42
    27 47 50
    22 43 50
    24 29 44
    12 18 43
    31 25 42
    1. Vir elke stel, bereken die gemiddelde en die vyf-getal opsomming.
    2. Vir elke klas, bereken die verskil tussen die gemiddelde en die mediaan. Skets 'n houer- en puntdiagram op dieselfde stel asse
    3. Sê watter van die drie stelle skeef is (of regs of links)
    4. Is stel A skeef of simmetries?
    5. Is stel C simmetries? Hoekom of hoekom nie?
  2. Twee stelle data het dieselfde omvang, maar een is skeef na regs en die ander een is skeef na links. Skets die houer- en puntdiagram en dan vind data (6 punte in elke stel) wat die vereistes voldoen.

Verspreidingsgrafieke

'n Verspreidingsgrafiek wys die verhouding tussen twee veranderlikes. Ons sê hierdie is tweeveranderlike data en ons plot die data van twee verskillende stelle deur middel van georde pare. Byvoorbeeld, ons kan massa op die horisontale as (eerste veranderlike) en hoogte op die tweede as (tweede veranderlike), of ons kan stroom op die horisontale as en spanning op die vertikale as hê.

Ohm se wet is 'n belangrike verhouding in fisika. Dit beskryf die verhouding tussen stroom en spanning in 'n geleier, soos 'n stuk draad. Wanneer ons die spanning meet (afhanklike veranderlike) wat verkry is deur 'n sekere stroom (onafhanklike veranderlike) in 'n draad, kry ons die data punte soos volg [link] .

Stroom en spanning waardes gemeet in 'n stuk draad.
Stroom Spanning Stroom Spanning
0 0,4 2,4 1,4
0,2 0,3 2,6 1,6
0,4 0,6 2,8 1,9
0,6 0,6 3 1,9
0,8 0,4 3,2 2
1 1 3,4 1,9
1,2 0,9 3,6 2,1
1,4 0,7 3,8 2,1
1,6 1 4 2,4
1,8 1,1 4,2 2,4
2 1,3 4,4 2,5
2,2 1,1 4,6 2,5

As ons hierdie data plot, kry ons die volgende verspreidingsgrafiek [link] .

As ons 'n funksie moet kies wat die data op die beste beskryf, sal 'n reguit lyn die beste opsie wees.

Ohm se wet

Ohm se wet beskryf die verhouding tussen stroom en spanning in 'n geleier. Die gradiënt van die grafiek van spanning teenoor stroom is bekend as die weerstand van die geleier.

Die funksie wat 'n stel data beste beskryf kan in enige vorm wees. Ons sal onsself aan die vorms wat reeds bestudeer is beperk, dit is, lineêre-, kwadratiese- of eksponensiële funksies. Plot die volgende stel data as 'n verspreidingsgrafiek, en besluit op 'n funksie wat die data beste beskryf. Die funksie kan of kwadraties of eksponensieel wees.

  1. x y x y x y x y
    -5 9,8 0 14,2 -2,5 11,9 2,5 49,3
    -4,5 4,4 0,5 22,5 -2 6,9 3 68,9
    -4 7,6 1 21,5 -1,5 8,2 3,5 88,4
    -3,5 7,9 1,5 27,5 -1 7,8 4 117,2
    -3 7,5 2 41,9 -0,5 14,4 4,5 151,4
  2. x y x y x y x y
    -5 75 0 5 -2,5 27,5 2,5 7,5
    -4,5 63,5 0,5 3,5 -2 21 3 11
    -4 53 1 3 -1,5 15,5 3,5 15,5
    -3,5 43,5 1,5 3,5 -1 11 4 21
    -3 35 2 5 -0,5 7,5 4,5 27,5
  3. Hoogte (cm) 147 150 152 155 157 160 163 165
    168 170 173 175 178 180 183
    Gewig (kg) 52 53 54 56 57 59 60 61
    63 64 66 68 70 72 74
uitskieter

'n Punt op 'n verspreidingsgrafiek wat wyd geskei is van die ander punte staan bekend as 'n uitskieter.

Die volgende simulasie laat jou toe om verskillende verspreidingsgrafiek-punte te plot sowel as 'n kromme op die plot. Ignoreer die fout bars (blou lyne) op die punte.

Phet simulasie vir verspreidingsgrafieke

Scatter plots

  1. 'n Klas se punte vir 'n toets was aangeteken saam met die hoeveelheid leertyd gespandeer daarvoor. Die resultate is gegee hieronder.
    Punt (persentasie) Tyd spandeer op leer (minute)
    67 100
    55 85
    70 150
    90 180
    45 70
    75 160
    50 80
    60 90
    84 110
    30 60
    66 96
    96 200
    1. Teken 'n diagram met beskryfte vir elke as
    2. Sê met rede, die doel of onafhanklike veranderlike en die effek of afhanklike veranderlike.
    3. Plot die data pare
    4. Wat kom jy agter oor die diagram?
    5. Is daar enige patroon wat volg?
  2. Die posisies van agt tennisspelers is gegee saam met die tyd wat hulle spandeer het op oefening.
    Oefentyd (min) Posisie
    154 5
    390 1
    130 6
    70 8
    240 3
    280 2
    175 4
    103 7
    1. Skets 'n verspreidingsgrafiek en verduidelik hoe jy die afhanklike veranderlike (doel) en onafhanklike afhanklike (effek) gekies het.
    2. Watter patroon neem jy waar?
  3. Agt kinders se lekkergoed verbruik en slaapgewoontes was aangeteken. Die data is gegee op die volgende tabel.
    getal lekkers (per week) gemiddelde slaaptyd (per dag)
    15 4
    12 4,5
    5 8
    3 8,5
    18 3
    23 2
    11 5
    4 8
    1. Wat is die afhanklike veranderlike?
    2. Wat is die onafhanklike veranderlike?
    3. Skets 'n verspreidingsgrafiek vir die data.
    4. Watter patroon neem jy waar?

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: wiskunde (graad 11). OpenStax CNX. Sep 20, 2011 Download for free at http://cnx.org/content/col11339/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 11)' conversation and receive update notifications?

Ask