<< Chapter < Page Chapter >> Page >

For the random variables in [link] , let W = X Y . Determine the value of W on each A i B j and determine the distribution of W .

XY = a.*b XY = 2 3 5 % XY values4 6 10 6 9 15W PW % Distribution for W = XY 2.0000 0.06003.0000 0.1200 4.0000 0.18005.0000 0.0200 6.0000 0.42009.0000 0.1200 10.0000 0.060015.0000 0.0200
Got questions? Get instant answers now!

A pair of dice is rolled.

  1. Let X be the minimum of the two numbers which turn up. Determine the distribution for X
  2. Let Y be the maximum of the two numbers. Determine the distribution for Y .
  3. Let Z be the sum of the two numbers. Determine the distribution for Z .
  4. Let W be the absolute value of the difference. Determine its distribution.
t = 1:6; c = ones(6,6);[x,y] = meshgrid(t,t)x = 1 2 3 4 5 6 % x-values in each position 1 2 3 4 5 61 2 3 4 5 6 1 2 3 4 5 61 2 3 4 5 6 1 2 3 4 5 6y = 1 1 1 1 1 1 % y-values in each position 2 2 2 2 2 23 3 3 3 3 3 4 4 4 4 4 45 5 5 5 5 5 6 6 6 6 6 6m = min(x,y); % min in each position M = max(x,y); % max in each positions = x + y; % sum x+y in each position d = abs(x - y); % |x - y| in each position[X,fX] = csort(m,c) % sorts values and counts occurrencesX = 1 2 3 4 5 6 fX = 11 9 7 5 3 1 % PX = fX/36[Y,fY] = csort(M,c)Y = 1 2 3 4 5 6 fY = 1 3 5 7 9 11 % PY = fY/36[Z,fZ] = csort(s,c)Z = 2 3 4 5 6 7 8 9 10 11 12 fZ = 1 2 3 4 5 6 5 4 3 2 1 %PZ = fZ/36[W,fW] = csort(d,c)W = 0 1 2 3 4 5 fW = 6 10 8 6 4 2 % PW = fW/36
Got questions? Get instant answers now!

Minterm probabilities p ( 0 ) through p ( 15 ) for the class { A , B , C , D } are, in order,

0 . 072 0 . 048 0 . 018 0 . 012 0 . 168 0 . 112 0 . 042 0 . 028 0 . 062 0 . 048 0 . 028 0 . 010 0 . 170 0 . 110 0 . 040 0 . 032

Determine the distribution for random variable

X = - 5 . 3 I A - 2 . 5 I B + 2 . 3 I C + 4 . 2 I D - 3 . 7
% file npr06_10.m % Data for [link] pm = [ 0.072 0.048 0.018 0.012 0.168 0.112 0.042 0.028 ... 0.062 0.048 0.028 0.010 0.170 0.110 0.040 0.032]; c = [-5.3 -2.5 2.3 4.2 -3.7]; disp('Minterm probabilities are in pm, coefficients in c') npr06_10 Minterm probabilities are in pm, coefficients in c canonicEnter row vector of coefficients c Enter row vector of minterm probabilities pmUse row matrices X and PX for calculations Call for XDBN to view the distributionXDBN XDBN =-11.5000 0.1700 -9.2000 0.0400-9.0000 0.0620 -7.3000 0.1100-6.7000 0.0280 -6.2000 0.1680-5.0000 0.0320 -4.8000 0.0480-3.9000 0.0420 -3.7000 0.0720-2.5000 0.0100 -2.0000 0.1120-1.4000 0.0180 0.3000 0.02800.5000 0.0480 2.8000 0.0120
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask