<< Chapter < Page
  Functions   Page 1 / 1
Chapter >> Page >

A function is one – one function, if every pre-image(x) in domain is related to a distinct image (y) in the co-domain. Otherwise, function is many-one function.

Note : This module did not follow the treatment on the subject as we needed to know different types of real functions in the first place. Besides, there are additional methods to determine function types. In particular, the concept of monotonous functions (increasing or decreasing) can be used to determine whether a function is one-one or not.

Working rules

  • Put f x 1 = f x 2 . Solve equation. If it yields x 1 = x 2 , then function is one-one; otherwise not.
  • Alternatively, draw plot of the given function. Draw a line parallel to x-axis such that it intersects as many points on the plot as possible. If it intersects the graph only at one point, then the function is one-one.
  • Alternatively, put f(x) = 0. Solve f(x) = f(0) for “x” and see whether “x” is single valued for being one-one function.
  • Alternatively, a function is an one-one function, if f(x) is a continuous function and is either increasing or decreasing function in the given domain.

Problem 1: A function f : R R is given by :

f x = x 3

Is the function one-one.

Solution :

Statement of the problem : Draw a line parallel to x-axis to intersect the plot of the function as many times as possible.

Function type

The line parallel to x-axis intersects function plot at one point.

We find that all lines drawn parallel to x-axis intersect the plot only once. Hence, the function is one-one.

Problem 2: A function f : R R is given by :

f x = x 2

Is the function one-one.

Solution :

Statement of the problem : We can solve f x 1 = f x 2 and see whether x 1 = x 2 to decide the function type.

x 1 2 = x 2 2

x 1 = ± x 2

We see that " x 1 " is not exclusively equal to " x 2 ". Hence, given function is not one-one function, but many – one function. This conclusion is further emphasized by the intersection of a line parallel to x-axis, which intersects function plot at two points.

Function type

The line parallel to x-axis intersects function plot at two points.

Problem 3: A function f : R R is given by :

f x = x | x |

Is the function one-one.

Solution :

Statement of the problem : Draw the plot of the function and see intersection of a line parallel to x-axis.

We observe from its plot that there is no line parallel to x-axis, which intersects the functions more than once. Hence, function is one-one.

Function type

The line parallel to x-axis intersects function plot at one point.

Problem 4: Determine whether greatest integer function is one-one function.

Solution : Statement of the problem : Draw the plot of the function and see intersection of a line parallel to x-axis.

Function type

The line parallel to x-axis intersects function plot at infinite pointes.

We have drawn one such line at y = 1. We see that this function value is valid for an interval of “x” given by 1≤x<2. Hence, greatest integer function is not one-one, but many –one function.

Problem 5: A function f : R R is given by :

f x = x 2 + 4 x + 30 x 2 8 x + 18

Is the function one-one.

Solution :

Statement of the problem : The given function is a rational function. We have to determine function type.

We evaluate function for x =0. If f(x)=f(0) equation yields multiple values of “x”, then function in not one-one. Here,

f 0 = x 2 + 4 x + 30 x 2 8 x + 18 = 0 2 + 4 X 0 + 30 0 2 8 X 0 + 18 = 30 18 = 5 3

Now,

f x = f 0

f x = x 2 + 4 x + 30 x 2 8 x + 18 = 5 3

3 x 2 + 12 x + 90 = 5 x 2 40 x + 90 2 x 2 52 x = 0

x = 0, 26

We see that f(0) = f(26). It means pre-images are not related to distinct images. Thus, we conclude that function is not one-one, but many-one.

Problem 6 : A continuous function f : R R is given by :

f x = x 2 + 4 x + 30 x 2 8 x + 18

Determine increasing or decreasing nature of the function and check whether function is an injection?

Solution :

Statement of the problem : The rational function is a continuous function. Hence, we can determine its increasing or decreasing nature in its domain by examining derivative of the function.

f x = x 2 8 x + 18 2 x + 4 x 2 + 4 x + 30 2 x 8 x 2 8 x + 18 2

f x = 12 x 2 + 2 x 26 x 2 8 x + 18 2

The denominator is a square of a quadratic expression, which evaluates to a positive number. On the other hand, the discreminant of the quadratic equation in the numerator is :

D = 2 2 4 X 1 X 26 = 4 + 104 = 108

It means that derivative has different signs in the domain interval. Therefore, the function is a combination of increasing and decreasing nature in different intervals composing domain. Thus, function is not monotonic in the domain interval. Hence, we conclude that function is not an injection.

Problem 7: A function f : R R is given by :

f x = cos 3 x + 2

Is the function one-one.

Solution :

Statement of the problem : We solve f x 1 = f x 2 and see whether x 1 = x 2 to decide the function type.

cos 3 x 1 + 2 = cos 3 x 2 + 2

The basic solution is :

3 x 1 + 2 = ± 3 x 2 + 2

General solution is obtained by adding integral multiples of the period of function, which is “2π” for cosine function :

3 x 1 + 2 = 2 n π ± 3 x 2 + 2 ; n Z

For n = 1,

f 3 x 1 + 2 = f { 2 π ± 3 x 2 + 2 }

Thus, multiple pre-images are related to same image. Hence, given function is not one-one.

We can easily interpret from the plots of different trigonometric functions that they are not one-one functions. However, they are one-one in the subset of their domain. Such is the case with other functions as well. They are generally not one-one, but may reduce to one-one in certain interval(s).

Problem 8 : A function f : R R is given by :

f x = a x 2 + 6 x 8 a + 6 x 8 x 2

Is the function one-one for a = 3?

Solution :

Statement of the problem : The given function is a rational function. Each of numerator and denominator functions is quadratic equation. In this case, solving f(a) = 0 for “x” reveals the nature of function for a =3.

f x = 3 x 2 + 6 x 8 3 + 6 x 8 x 2 = 0

3 x 2 + 6 x 8 = 0

x = - 6 ± 36 4 X 3 X - 8 6 = - 1 ± 33 3

As “x” is not unique, the given function is not one-one function. We should emphasize here that solution of function when equated to zero is not a full proof method. In this particular case, it turns out that function value becomes zero for two values of “x”. In general, we should resort to techniques outlined in the beginning of the module to determine function type.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask