<< Chapter < Page Chapter >> Page >
The DFT can be reduced from exponential time with the Fast Fourier Transform algorithm.

One wonders if the DFT can be computed faster: Does another computational procedure -- an algorithm -- exist that can compute the same quantity, but more efficiently. Wecould seek methods that reduce the constant of proportionality, but do not change the DFT's complexity O N 2 .Here, we have something more dramatic in mind: Can the computations be restructuredso that a smaller complexity results?

In 1965, IBM researcher Jim Cooley and Princeton faculty member John Tukey developed what is now known as the Fast FourierTransform (FFT). It is an algorithm for computing that DFT that has order O N N for certain length inputs . Now when the length of data doubles, the spectral computational time will not quadruple aswith the DFT algorithm; instead, it approximately doubles. Later research showed that no algorithm for computing the DFT could have asmaller complexity than the FFT. Surprisingly, historical work has shown that Gauss in the early nineteenth century developed the samealgorithm, but did not publish it! After the FFT's rediscovery, not only was the computation of a signal's spectrum greatlyspeeded, but also the added feature of algorithm meant that computations had flexibility not available to analog implementations.

Before developing the FFT, let's try to appreciate the algorithm's impact. Suppose a short-length transform takes1 ms. We want to calculate a transform of a signal that is 10 times longer. Compare how much longer a straightforwardimplementation of the DFT would take in comparison to an FFT, both of which compute exactly the same quantity.

If a DFT required 1ms to compute, and signal having ten times the duration would require 100ms to compute. Using theFFT, a 1ms computing time would increase by a factor of about 10 2 logbase --> 10 33 , a factor of 3 less than the DFT would have needed.

Got questions? Get instant answers now!

To derive the FFT, we assume that the signal's duration is a power of two: N 2 L . Consider what happens to the even-numbered and odd-numberedelements of the sequence in the DFT calculation.

S k s 0 s 2 2 2 k N s N 2 2 N 2 k N s 1 2 k N s 3 2 2 1 k N s N 1 2 N 2 1 k N [ s 0 s 2 2 k N 2 s N 2 2 N 2 1 k N 2 ] [ s 1 s 3 2 k N 2 s N 1 2 N 2 1 k N 2 ] 2 k N

Each term in square brackets has the form of a N 2 -length DFT. The first one is a DFT of the even-numbered elements, and the second of the odd-numberedelements. The first DFT is combined with the second multiplied by the complex exponential 2 k N . The half-length transforms are each evaluated at frequency indices k 0 , , N 1 . Normally, the number of frequency indices in a DFT calculationrange between zero and the transform length minus one. The computational advantage of the FFT comes from recognizing the periodic nature of the discrete Fouriertransform. The FFT simply reuses the computations made in the half-length transforms and combines them through additions andthe multiplication by 2 k N , which is not periodic over N 2 . [link] illustrates this decomposition. As it stands, we now compute two length- N 2 transforms (complexity 2 O N 2 4 ), multiply one of them by the complex exponential (complexity O N ), and add the results (complexity O N ). At this point, the total complexity is still dominated by the half-length DFT calculations, but theproportionality coefficient has been reduced.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask