<< Chapter < Page Chapter >> Page >

Now for the fun. Because N 2 L , each of the half-length transforms can be reduced to two quarter-length transforms, each of these to twoeighth-length ones, etc. This decomposition continues until we are left with length-2 transforms. This transform is quitesimple, involving only additions. Thus, the first stage of the FFT has N 2 length-2 transforms (see the bottom part of [link] ). Pairs of these transforms are combined by adding one to the other multiplied by a complexexponential. Each pair requires 4 additions and 2 multiplications, giving a total number of computations equaling 6 · N 4 3 N 2 . This number of computations does not change from stage to stage.Because the number of stages, the number of times the length can be divided by two, equals 2 logbase --> N , the number of arithmetic operations equals 3 N 2 2 logbase --> N , which makes the complexity of the FFT O N 2 logbase --> N .

Length-8 dft decomposition

The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed inputs marks the first phase ofdeveloping the FFT algorithm. When these half-length transforms are successively decomposed, we are left with the diagram shownin the bottom panel that depicts the length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the detailsof a length-8 DFT. As shown on [link] , we first decompose the DFT into two length-4 DFTs, with the outputs added and subtracted together in pairs.Considering [link] as the frequency index goes from 0 through 7, we recycle values fromthe length-4 DFTs into the final calculation because of the periodicity of the DFT output. Examining how pairs of outputsare collected together, we create the basic computational element known as a butterfly ( [link] ).

Butterfly

The basic computational element of the fast Fourier transform is the butterfly. It takes two complex numbers, representedby a and b , and forms the quantities shown. Each butterfly requires onecomplex multiplication and two complex additions.
By considering together the computations involving common output frequencies from the two half-length DFTs, we see that the twocomplex multiplies are related to each other, and we can reduce our computational work even further. By further decomposing thelength-4 DFTs into two length-2 DFTs and combining their outputs, we arrive at the diagram summarizing the length-8 fastFourier transform ( [link] ). Although most of the complex multiplies are quite simple(multiplying by 2 means swapping real and imaginary parts and changing their signs), let's count those forpurposes of evaluating the complexity as full complex multiplies. We have N 2 4 complex multiplies and N 8 complex additions for each stage and 2 logbase --> N 3 stages, making the number of basic computations 3 N 2 2 logbase --> N as predicted.

Note that the ordering of the input sequence in the two parts of [link] aren't quite the same. Why not? How is the ordering determined?

The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has. The ordering isdetermined by the algorithm.

Got questions? Get instant answers now!

Other "fast" algorithms were discovered, all of which make use of how many common factors the transformlength N has. In number theory, the number of prime factors a given integer has measures how composite it is. The numbers 16 and 81 are highly composite (equaling 2 4 and 3 4 respectively), the number 18 is less so ( 2 1 · 3 2 ), and 17 not at all (it's prime). In over thirty years of Fourier transform algorithm development, the originalCooley-Tukey algorithm is far and away the most frequently used. It is so computationally efficient that power-of-twotransform lengths are frequently used regardless of what the actual length of the data.

Suppose the length of the signal were 500 ? How would you compute the spectrum of this signal using the Cooley-Tukeyalgorithm? What would the length N of the transform be?

The transform can have any greater than or equal to the actual duration of the signal. We simply“pad” the signal with zero-valued samples until a computationally advantageous signal length results. Recallthat the FFT is an algorithm to compute the DFT . Extending the length of the signal this way merely means weare sampling the frequency axis more finely than required. To use the Cooley-Tukey algorithm, the length of theresulting zero-padded signal can be 512, 1024, etc. samples long.

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask