<< Chapter < Page Chapter >> Page >
Two oblique triangles with standard labels. Both have a dotted altitude line h extended from angle beta to the horizontal base side b. In the first, which is an acute triangle, the altitude is within the triangle. In the second, which is an obtuse triangle, the altitude h is outside of the triangle.

Thus,

Area = 1 2 ( base ) ( height ) = 1 2 b ( c sin α )

Similarly,

Area = 1 2 a ( b sin γ ) = 1 2 a ( c sin β )

Area of an oblique triangle

The formula for the area of an oblique triangle is given by

Area = 1 2 b c sin α = 1 2 a c sin β = 1 2 a b sin γ

This is equivalent to one-half of the product of two sides and the sine of their included angle.

Finding the area of an oblique triangle

Find the area of a triangle with sides a = 90 , b = 52 , and angle γ = 102° . Round the area to the nearest integer.

Using the formula, we have

Area = 1 2 a b sin γ Area = 1 2 ( 90 ) ( 52 ) sin ( 102° ) Area 2289 square units

Find the area of the triangle given β = 42° , a = 7.2 ft , c = 3.4 ft . Round the area to the nearest tenth.

about 8.2 square feet

Solving applied problems using the law of sines

The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and motion.

Finding an altitude

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in [link] . Round the altitude to the nearest tenth of a mile.

A diagram of a triangle where the vertices are the first ground station, the second ground station, and the airplane in the air between them. The angle between the first ground station and the plane is 15 degrees, and the angle between the second station and the airplane is 35 degrees. The side between the two stations is of length 20 miles. There is a dotted altitude line perpendicular to the ground side connecting the airplane vertex with the ground.

To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side a , and then use right triangle relationships to find the height of the aircraft, h .

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

   sin ( 130° ) 20 = sin ( 35° ) a a sin ( 130° ) = 20 sin ( 35° )                 a = 20 sin ( 35° ) sin ( 130° )                 a 14.98

The distance from one station to the aircraft is about 14.98 miles.

Now that we know a , we can use right triangle relationships to solve for h .

sin ( 15° ) = opposite hypotenuse sin ( 15° ) = h a sin ( 15° ) = h 14.98             h = 14.98 sin ( 15° )            h 3.88

The aircraft is at an altitude of approximately 3.9 miles.

The diagram shown in [link] represents the height of a blimp flying over a football stadium. Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the angle of elevation from the northern end zone, point B , is 62°, and the distance between the viewing points of the two end zones is 145 yards.

An oblique triangle formed from three vertices A, B, and C. Verticies A and B are points on the ground, and vertex C is the blimp in the air between them. The distance between A and B is 145 yards. The angle at vertex A is 70 degrees, and the angle at vertex B is 62 degrees.

161.9 yd.

Access these online resources for additional instruction and practice with trigonometric applications.

Key equations

Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Area for oblique triangles Area = 1 2 b c sin α         = 1 2 a c sin β         = 1 2 a b sin γ

Key concepts

  • The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
  • According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side equals the other two ratios of angle measure to opposite side.
  • There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate equation to find the requested solution. See [link] .
  • The ambiguous case arises when an oblique triangle can have different outcomes.
  • There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no solution. See [link] and [link] .
  • The Law of Sines can be used to solve triangles with given criteria. See [link] .
  • The general area formula for triangles translates to oblique triangles by first finding the appropriate height value. See [link] .
  • There are many trigonometric applications. They can often be solved by first drawing a diagram of the given information and then using the appropriate equation. See [link] .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask