Using the substitutions
x
=
v and
y
=
u
+
v
, evaluate the integral
∬
R
y
sin
(
y
2
−
x
)
d
A where
R is the region bounded by the lines
y
=
x
,
x
=
2
,
and
y
=
0
.
Got questions? Get instant answers now!
Change of variables for triple integrals
Changing variables in triple integrals works in exactly the same way. Cylindrical and spherical coordinate substitutions are special cases of this method, which we demonstrate here.
Suppose that
G is a region in
u
v
w
-space and is mapped to
D in
x
y
z
-space (
[link] ) by a one-to-one
C
1 transformation
T
(
u
,
v
,
w
)
=
(
x
,
y
,
z
) where
x
=
g
(
u
,
v
,
w
)
,
y
=
h
(
u
,
v
,
w
)
, and
z
=
k
(
u
,
v
,
w
)
.
A region
G in
u
v
w
-space mapped to a region
D in
x
y
z
-space
.
Then any function
F
(
x
,
y
,
z
) defined on
D can be thought of as another function
H
(
u
,
v
,
w
) that is defined on
G
:
F
(
x
,
y
,
z
)
=
F
(
g
(
u
,
v
,
w
)
,
h
(
u
,
v
,
w
)
,
k
(
u
,
v
,
w
)
)
=
H
(
u
,
v
,
w
)
.
Now we need to define the Jacobian for three variables.
Definition
The Jacobian determinant
J
(
u
,
v
,
w
) in three variables is defined as follows:
J
(
u
,
v
,
w
)
=
|
∂
x
∂
u
∂
y
∂
u
∂
z
∂
u
∂
x
∂
v
∂
y
∂
v
∂
z
∂
v
∂
x
∂
w
∂
y
∂
w
∂
z
∂
w
|
.
This is also the same as
J
(
u
,
v
,
w
)
=
|
∂
x
∂
u
∂
x
∂
v
∂
x
∂
w
∂
y
∂
u
∂
y
∂
v
∂
y
∂
w
∂
z
∂
u
∂
z
∂
v
∂
z
∂
w
|
.
The Jacobian can also be simply denoted as
∂
(
x
,
y
,
z
)
∂
(
u
,
v
,
w
)
.
With the transformations and the Jacobian for three variables, we are ready to establish the theorem that describes change of variables for triple integrals.
Change of variables for triple integrals
Let
T
(
u
,
v
,
w
)
=
(
x
,
y
,
z
) where
x
=
g
(
u
,
v
,
w
)
,
y
=
h
(
u
,
v
,
w
)
, and
z
=
k
(
u
,
v
,
w
)
, be a one-to-one
C
1 transformation, with a nonzero Jacobian, that maps the region
G in the
u
v
w
-plane into the region
D in the
x
y
z
-plane
. As in the two-dimensional case, if
F is continuous on
D
, then
∭
R
F
(
x
,
y
,
z
)
d
V
=
∭
G
F
(
g
(
u
,
v
,
w
)
,
h
(
u
,
v
,
w
)
,
k
(
u
,
v
,
w
)
)
|
∂
(
x
,
y
,
z
)
∂
(
u
,
v
,
w
)
|
d
u
d
v
d
w
=
∭
G
H
(
u
,
v
,
w
)
|
J
(
u
,
v
,
w
)
|
d
u
d
v
d
w
.
Let us now see how changes in triple integrals for cylindrical and spherical coordinates are affected by this theorem. We expect to obtain the same formulas as in
Triple Integrals in Cylindrical and Spherical Coordinates .
Derive the formula in triple integrals for
cylindrical and
spherical coordinates.
For cylindrical coordinates, the transformation is
T
(
r
,
θ
,
z
)
=
(
x
,
y
,
z
) from the Cartesian
r
θ
z
-plane to the Cartesian
x
y
z
-plane (
[link] ). Here
x
=
r
cos
θ
,
y
=
r
sin
θ
, and
z
=
z
. The Jacobian for the transformation is
J
(
r
,
θ
,
z
)
=
∂
(
x
,
y
,
z
)
∂
(
r
,
θ
,
z
)
=
|
∂
x
∂
r
∂
x
∂
θ
∂
x
∂
z
∂
y
∂
r
∂
y
∂
θ
∂
y
∂
z
∂
z
∂
r
∂
z
∂
θ
∂
z
∂
z
|
=
|
cos
θ
−
r
sin
θ
0
sin
θ
r
cos
θ
0
0
0
1
|
=
r
cos
2
θ
+
r
sin
2
θ
=
r
(
cos
2
θ
+
sin
2
θ
)
=
r
.
We know that
r
≥
0
, so
|
J
(
r
,
θ
,
z
)
|
=
r
. Then the triple integral is
∭
D
f
(
x
,
y
,
z
)
d
V
=
∭
G
f
(
r
cos
θ
,
r
sin
θ
,
z
)
r
d
r
d
θ
d
z
.
The transformation from rectangular coordinates to cylindrical coordinates can be treated as a change of variables from region
G in
r
θ
z
-space to region
D in
x
y
z
-space
.
For spherical coordinates, the transformation is
T
(
ρ
,
θ
,
φ
)
=
(
x
,
y
,
z
) from the Cartesian
p
θ
φ
-plane to the Cartesian
x
y
z
-plane (
[link] ). Here
x
=
ρ
sin
φ
cos
θ
,
y
=
ρ
sin
φ
sin
θ
, and
z
=
ρ
cos
φ
. The Jacobian for the transformation is
J
(
ρ
,
θ
,
φ
)
=
∂
(
x
,
y
,
z
)
∂
(
ρ
,
θ
,
φ
)
=
|
∂
x
∂
ρ
∂
x
∂
θ
∂
x
∂
φ
∂
y
∂
ρ
∂
y
∂
θ
∂
y
∂
φ
∂
z
∂
ρ
∂
z
∂
θ
∂
z
∂
φ
|
=
|
sin
φ
cos
θ
−
ρ
sin
φ
sin
θ
ρ
cos
φ
cos
θ
sin
φ
sin
θ
−
ρ
sin
φ
cos
θ
ρ
cos
φ
sin
θ
cos
θ
0
−
ρ
sin
φ
|
.
Expanding the determinant with respect to the third row:
=
cos
φ
|
−
ρ
sin
φ
sin
θ
ρ
cos
φ
cos
θ
ρ
sin
φ
sin
θ
ρ
cos
φ
sin
θ
|
−
ρ
sin
φ
|
sin
φ
cos
θ
−
ρ
sin
φ
sin
θ
sin
φ
sin
θ
ρ
sin
φ
cos
θ
|
=
cos
φ
(
−
ρ
2
sin
φ
cos
φ
sin
2
θ
−
ρ
2
sin
φ
cos
φ
cos
2
θ
)
−
ρ
sin
φ
(
ρ
sin
2
φ
cos
2
θ
+
ρ
sin
2
φ
sin
2
θ
)
=
−
ρ
2
sin
φ
cos
2
φ
(
sin
2
θ
+
cos
2
θ
)
−
ρ
2
sin
φ
sin
2
φ
(
sin
2
θ
+
cos
2
θ
)
=
−
ρ
2
sin
φ
cos
2
φ
−
ρ
2
sin
φ
sin
2
φ
=
−
ρ
2
sin
φ
(
cos
2
φ
+
sin
2
φ
)
=
−
ρ
2
sin
φ
.
Since
0
≤
φ
≤
π
, we must have
sin
φ
≥
0
. Thus
|
J
(
ρ
,
θ
,
φ
)
|
=
|
−
ρ
2
sin
φ
|
=
ρ
2
sin
φ
.
The transformation from rectangular coordinates to spherical coordinates can be treated as a change of variables from region
G in
ρ
θ
φ
-space to region
D in
x
y
z
-space
.
Then the triple integral becomes
∭
D
f
(
x
,
y
,
z
)
d
V
=
∭
G
f
(
ρ
sin
φ
cos
θ
,
ρ
sin
φ
sin
θ
,
ρ
cos
φ
)
ρ
2
sin
φ
d
ρ
d
φ
d
θ
.
Got questions? Get instant answers now! Got questions? Get instant answers now!