<< Chapter < Page Chapter >> Page >

Key concepts and summary

Entropy ( S ) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the “disorder” of the system.

For a given substance, S solid < S liquid < S gas in a given physical state at a given temperature, entropy is typically greater for heavier atoms or more complex molecules. Entropy increases when a system is heated and when solutions form. Using these guidelines, the sign of entropy changes for some chemical reactions may be reliably predicted.

Key equations

  • Δ S = q rev T
  • S = k ln W
  • Δ S = k ln W f W i

Chemistry end of chapter exercises

In [link] all possible distributions and microstates are shown for four different particles shared between two boxes. Determine the entropy change, Δ S , if the particles are initially evenly distributed between the two boxes, but upon redistribution all end up in Box (b).

Got questions? Get instant answers now!

In [link] all of the possible distributions and microstates are shown for four different particles shared between two boxes. Determine the entropy change, Δ S , for the system when it is converted from distribution (b) to distribution (d).

There are four initial microstates and four final microstates.
Δ S = k ln W f W i = 1.38 × 10 −23 J/K × ln 4 4 = 0

Got questions? Get instant answers now!

How does the process described in the previous item relate to the system shown in [link] ?

Got questions? Get instant answers now!

Consider a system similar to the one in [link] , except that it contains six particles instead of four. What is the probability of having all the particles in only one of the two boxes in the case? Compare this with the similar probability for the system of four particles that we have derived to be equal to 1 8 . What does this comparison tell us about even larger systems?

The probability for all the particles to be on one side is 1 32 . This probability is noticeably lower than the 1 8 result for the four-particle system. The conclusion we can make is that the probability for all the particles to stay in only one part of the system will decrease rapidly as the number of particles increases, and, for instance, the probability for all molecules of gas to gather in only one side of a room at room temperature and pressure is negligible since the number of gas molecules in the room is very large.

Got questions? Get instant answers now!

Consider the system shown in [link] . What is the change in entropy for the process where the energy is initially associated only with particle A, but in the final state the energy is distributed between two different particles?

Got questions? Get instant answers now!

Consider the system shown in [link] . What is the change in entropy for the process where the energy is initially associated with particles A and B, and the energy is distributed between two particles in different boxes (one in A-B, the other in C-D)?

There is only one initial state. For the final state, the energy can be contained in pairs A-C, A-D, B-C, or B-D. Thus, there are four final possible states.
Δ S = k ln ( W f W i ) = 1.38 × 10 23 J/K × ln ( 4 1 ) = 1.91 × 10 23 J/K

Got questions? Get instant answers now!

Arrange the following sets of systems in order of increasing entropy. Assume one mole of each substance and the same temperature for each member of a set.

(a) H 2 ( g ), HBrO 4 ( g ), HBr( g )

(b) H 2 O( l ), H 2 O( g ), H 2 O( s )

(c) He( g ), Cl 2 ( g ), P 4 ( g )

Got questions? Get instant answers now!

At room temperature, the entropy of the halogens increases from I 2 to Br 2 to Cl 2 . Explain.

The masses of these molecules would suggest the opposite trend in their entropies. The observed trend is a result of the more significant variation of entropy with a physical state. At room temperature, I 2 is a solid, Br 2 is a liquid, and Cl 2 is a gas.

Got questions? Get instant answers now!

Consider two processes: sublimation of I 2 ( s ) and melting of I 2 ( s ) (Note: the latter process can occur at the same temperature but somewhat higher pressure).

I 2 ( s ) I 2 ( g )

I 2 ( s ) I 2 ( l )

Is Δ S positive or negative in these processes? In which of the processes will the magnitude of the entropy change be greater?

Got questions? Get instant answers now!

Indicate which substance in the given pairs has the higher entropy value. Explain your choices.

(a) C 2 H 5 OH( l ) or C 3 H 7 OH( l )

(b) C 2 H 5 OH( l ) or C 2 H 5 OH( g )

(c) 2H( g ) or H( g )

(a) C 3 H 7 OH( l ) as it is a larger molecule (more complex and more massive), and so more microstates describing its motions are available at any given temperature. (b) C 2 H 5 OH( g ) as it is in the gaseous state. (c) 2H( g ), since entropy is an extensive property, and so two H atoms (or two moles of H atoms) possess twice as much entropy as one atom (or one mole of atoms).

Got questions? Get instant answers now!

Predict the sign of the entropy change for the following processes.

(a) An ice cube is warmed to near its melting point.

(b) Exhaled breath forms fog on a cold morning.

(c) Snow melts.

Got questions? Get instant answers now!

Predict the sign of the entropy change for the following processes. Give a reason for your prediction.

(a) Pb 2+ ( a q ) + S 2− ( a q ) PbS ( s )

(b) 2 Fe ( s ) + 3 O 2 ( g ) Fe 2 O 3 ( s )

(c) 2 C 6 H 14 ( l ) + 19 O 2 ( g ) 14 H 2 O ( g ) + 12 CO 2 ( g )

(a) Negative. The relatively ordered solid precipitating decreases the number of mobile ions in solution. (b) Negative. There is a net loss of three moles of gas from reactants to products. (c) Positive. There is a net increase of seven moles of gas from reactants to products.

Got questions? Get instant answers now!

Write the balanced chemical equation for the combustion of methane, CH 4 ( g ), to give carbon dioxide and water vapor. Explain why it is difficult to predict whether Δ S is positive or negative for this chemical reaction.

Got questions? Get instant answers now!

Write the balanced chemical equation for the combustion of benzene, C 6 H 6 ( l ), to give carbon dioxide and water vapor. Would you expect Δ S to be positive or negative in this process?

C 6 H 6 ( l ) + 7.5 O 2 ( g ) 3H 2 O( g ) + 6CO 2 ( g )
There are 7.5 moles of gas initially, and 3 + 6 = 9 moles of gas in the end. Therefore, it is likely that the entropy increases as a result of this reaction, and Δ S is positive.

Got questions? Get instant answers now!

Questions & Answers

why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask