<< Chapter < Page | Chapter >> Page > |
Mechanisms by which substances move across membranes for reabsorption or secretion include active transport, diffusion, facilitated diffusion, secondary active transport, and osmosis. These were discussed in an earlier chapter, and you may wish to review them.
Active transport utilizes energy, usually the energy found in a phosphate bond of ATP, to move a substance across a membrane from a low to a high concentration. It is very specific and must have an appropriately shaped receptor for the substance to be transported. An example would be the active transport of Na + out of a cell and K + into a cell by the Na + /K + pump. Both ions are moved in opposite directions from a lower to a higher concentration.
Simple diffusion moves a substance from a higher to a lower concentration down its concentration gradient. It requires no energy and only needs to be soluble.
Facilitated diffusion is similar to diffusion in that it moves a substance down its concentration gradient. The difference is that it requires specific membrane receptors or channel proteins for movement. The movement of glucose and, in certain situations, Na + ions, is an example of facilitated diffusion. In some cases of facilitated diffusion, two different substances share the same channel protein port; these mechanisms are described by the terms symport and antiport.
Symport mechanisms move two or more substances in the same direction at the same time, whereas antiport mechanisms move two or more substances in opposite directions across the cell membrane. Both mechanisms may utilize concentration gradients maintained by ATP pumps. This is a mechanism described by the term “secondary active transport.” For example, a Na + ATPase pump on the basilar membrane of a cell may constantly pump Na + out of a cell, maintaining a strong electrochemical gradient. On the opposite (apical) surface, a Na + /glucose symport protein channel assists both Na + and glucose into the cell as Na + moves down the concentration gradient created by the basilar Na + ATPase pumps. The glucose molecule then diffuses across the basal membrane by facilitated diffusion into the interstitial space and from there into peritubular capillaries.
Most of the Ca ++ , Na + , glucose, and amino acids must be reabsorbed by the nephron to maintain homeostatic plasma concentrations. Other substances, such as urea, K + , ammonia (NH 3) , creatinine, and some drugs are secreted into the filtrate as waste products. Acid–base balance is maintained through actions of the lungs and kidneys: The lungs rid the body of H + , whereas the kidneys secrete or reabsorb H + and HCO 3 – ( [link] ). In the case of urea, about 50 percent is passively reabsorbed by the PCT. More is recovered by in the collecting ducts as needed. ADH induces the insertion of urea transporters and aquaporin channel proteins.
Substances Filtered and Reabsorbed by the Kidney per 24 Hours | |||
---|---|---|---|
Substance | Amount filtered (grams) | Amount reabsorbed (grams) | Amount in urine (grams) |
Water | 180 L | 179 L | 1 L |
Proteins | 10–20 | 10–20 | 0 |
Chlorine | 630 | 625 | 5 |
Sodium | 540 | 537 | 3 |
Bicarbonate | 300 | 299.7 | 0.3 |
Glucose | 180 | 180 | 0 |
Urea | 53 | 28 | 25 |
Potassium | 28 | 24 | 4 |
Uric acid | 8.5 | 7.7 | 0.8 |
Creatinine | 1.4 | 0 | 1.4 |
Notification Switch
Would you like to follow the '101-321-va - vertebrate form and function ii' conversation and receive update notifications?