<< Chapter < Page Chapter >> Page >

A function is strictly increasing, strictly decreasing, non-decreasing and non-increasing in a suitably selected interval in the domain of the function. We have seen that a linear algebraic function maintains order of change throughout its domain. The order of change, however, may not be maintained for higher degree algebraic and other functions in its domain. We shall, therefore, determine monotonic nature in sub-intervals or domain as the case be.

One of the fundamental ways to determine nature of function is by comparing function values corresponding to two independent values ( x 1 and x 2 ). This technique to determine nature of function works for linear and some simple function forms and is not useful for functions more complex in nature. In this module, we shall develop an algorithm based on derivative of function for determining nature of function in different intevals.

In the discussion about monotonic function in earlier module, we observed that order of change in function values is related to sign of the derivative of function. The task of finding increasing and decreasing intervals is, therefore, about finding sign of derivative of function in different intervals and determining points or intervals where derivative turns zero.

Nature of function and intervals

The steps for determining intervals are given as under :

1: Determine derivative of given function i.e. f’(x).

2: Determine sign of derivative in different intervals.

3: Determine monotonic nature of function in accordance with following categorization :

f x 0 : equality holding for points only – strictly increasing interval f x 0 : equality holding for subsections also – non-decreasing or increasing interval f x 0 : equality holding for points only – strictly decreasing interval f x 0 : equality holding for subsections also – non-increasing or decreasing interval

5: The interval is open “( )” at end points, if function is not continuous at end points. However, interval is close “[]” at end points, if function is continuous at end points.

In order to illustrate the steps, we consider a function,

f x = x 2 x

Its first derivative is :

f x = 2 x 1

Here, critical point is 1/2. First derivative, f’(x), is positive for x>1/2 and negative for x<1/2. The signs of derivative are strict inequalities. It means that function is either strictly increasing or strictly decreasing in the open intervals. We know that infinity end is an open end. But, function is continuous in the given interval. Hence, we can include end point x=1/2. Further, since derivative is zero at x=1/2 i.e. at a single point, function remains strictly increasing or decreasing.

Strictly increasing interval = [ , 1 2 ] Strictly decreasing interval = [ 1 2 , ]

Algebraic functions

Derivative of algebraic function is also algebraic. In order to determine sign of derivative, we use sign scheme or wavy curve method, wherever expressions in derivative can be factorized.

Problem : Determine monotonic nature of function in different intervals :

f x = 3 x 4 x 3

Solution : Its first derivative is :

f x = 12 x 3 3 x 2 = 3 x 2 4 x 1

Here, critical points are 0,0,1/4. We have taken 0 twice as we need to write given function in terms of factors as :

f x = 3 x 0 x 0 4 x 1

Since zero is repeated even times, derivative does not change at x=0. The sign scheme is shown in the figure. First derivative, f’(x), is positive for x>1/4 and negative for x<1/4. Derivative is zero at x=0 and 1/4 i.e. at points only. Clearly, the monotonic nature is "strict" in these intervals. But, function is continuous in the given interval. Hence, we include end point also :

Sign diagram

Increasing and decreasing intervals.

Strictly increasing interval = [ 1 4 , ) Strictly decreasing interval = ( - , 1 4 ]

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask