<< Chapter < Page Chapter >> Page >

A function is strictly increasing, strictly decreasing, non-decreasing and non-increasing in a suitably selected interval in the domain of the function. We have seen that a linear algebraic function maintains order of change throughout its domain. The order of change, however, may not be maintained for higher degree algebraic and other functions in its domain. We shall, therefore, determine monotonic nature in sub-intervals or domain as the case be.

One of the fundamental ways to determine nature of function is by comparing function values corresponding to two independent values ( x 1 and x 2 ). This technique to determine nature of function works for linear and some simple function forms and is not useful for functions more complex in nature. In this module, we shall develop an algorithm based on derivative of function for determining nature of function in different intevals.

In the discussion about monotonic function in earlier module, we observed that order of change in function values is related to sign of the derivative of function. The task of finding increasing and decreasing intervals is, therefore, about finding sign of derivative of function in different intervals and determining points or intervals where derivative turns zero.

Nature of function and intervals

The steps for determining intervals are given as under :

1: Determine derivative of given function i.e. f’(x).

2: Determine sign of derivative in different intervals.

3: Determine monotonic nature of function in accordance with following categorization :

f x 0 : equality holding for points only – strictly increasing interval f x 0 : equality holding for subsections also – non-decreasing or increasing interval f x 0 : equality holding for points only – strictly decreasing interval f x 0 : equality holding for subsections also – non-increasing or decreasing interval

5: The interval is open “( )” at end points, if function is not continuous at end points. However, interval is close “[]” at end points, if function is continuous at end points.

In order to illustrate the steps, we consider a function,

f x = x 2 x

Its first derivative is :

f x = 2 x 1

Here, critical point is 1/2. First derivative, f’(x), is positive for x>1/2 and negative for x<1/2. The signs of derivative are strict inequalities. It means that function is either strictly increasing or strictly decreasing in the open intervals. We know that infinity end is an open end. But, function is continuous in the given interval. Hence, we can include end point x=1/2. Further, since derivative is zero at x=1/2 i.e. at a single point, function remains strictly increasing or decreasing.

Strictly increasing interval = [ , 1 2 ] Strictly decreasing interval = [ 1 2 , ]

Algebraic functions

Derivative of algebraic function is also algebraic. In order to determine sign of derivative, we use sign scheme or wavy curve method, wherever expressions in derivative can be factorized.

Problem : Determine monotonic nature of function in different intervals :

f x = 3 x 4 x 3

Solution : Its first derivative is :

f x = 12 x 3 3 x 2 = 3 x 2 4 x 1

Here, critical points are 0,0,1/4. We have taken 0 twice as we need to write given function in terms of factors as :

f x = 3 x 0 x 0 4 x 1

Since zero is repeated even times, derivative does not change at x=0. The sign scheme is shown in the figure. First derivative, f’(x), is positive for x>1/4 and negative for x<1/4. Derivative is zero at x=0 and 1/4 i.e. at points only. Clearly, the monotonic nature is "strict" in these intervals. But, function is continuous in the given interval. Hence, we include end point also :

Sign diagram

Increasing and decreasing intervals.

Strictly increasing interval = [ 1 4 , ) Strictly decreasing interval = ( - , 1 4 ]

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask