<< Chapter < Page Chapter >> Page >
This module contains an axiom of choice and also includes various theorems and exercises related to the usage of integrals in finding the area of regions in the plane.

It would be desirable to be able to assign to each subset S of the Cartesian plane R 2 a nonnegative real number A ( S ) called its area. We would insist based on our intuition that (i) if S is a rectangle with sides of length L and W then the number A ( S ) should be L W , so that this abstract notion of area would generalize our intuitively fundamental one. We would also insist that (ii) if S were the union of two disjoint parts, S = S 1 S 2 , then A ( S ) should be A ( S 1 ) + A ( S 2 ) . (We were taught in high school plane geometry that the whole is the sum of its parts.) In fact, even if S were the union of an infinite number of disjoint parts, S = n = 1 S n with S i S j = if i j , we would insist that (iii) A ( S ) = n = 1 A ( S n ) .

The search for such a definition of area for every subset of R 2 motivated much of modern mathematics. Whether or not such an assignment exists is intimately related to subtle questions in basic set theory,e.g., the Axiom of Choice and the Continuum Hypothesis . Most mathematical analysts assume that the Axiom of Choice holds, and as a result of that assumption,it has been shown that there can be no assignment S A ( S ) satisfying the above three requirements. Conversely, if one does not assume that the Axiom of Choiceholds, then it has also been shown that it is perfectly consistent to assume as a basic axiom that such an assignment S A ( S ) does exist. We will not pursue these subtle points here, leaving them to a course in Set Theory or Measure Theory.However, Here's a statement of the Axiom of Choice, and we invite the reader to think about how reasonable it seems.

AXIOM OF CHOICE Let S be a collection of sets. Then there exists a set A that contains exactly one element out of each of the sets S in S .

The difficulty mathematicians encountered in trying to define area turned out to be involved withdefining A ( S ) for every subset S R 2 . To avoid this difficulty, we will restrict our attention here to certain “ reasonable” subsets S . Of course, we certainly want these sets to include the rectangles and all other common geometric sets.

By a (open) rectangle we will mean a set R = ( a , b ) × ( c , d ) in R 2 . That is, R = { ( x , y ) : a < x < b and c < y < d } . The analogous definition of a closed rectangle [ a , b ] × [ c , d ] should be clear: [ a , b ] × [ c , d ] = { ( x , y ) : a x b , c y d } .

By the area of a (open or closed) rectangle R = ( a , b ) × ( c , d ) or [ a , b ] × [ c , d ] we mean the number A ( R ) = ( b - a ) ( d - c ) . .

The fundamental notion behind our definition of the area of a set S is this. If an open rectangle R = ( a , b ) × ( c , d ) is a subset of S , then the area A ( S ) surely should be greater than or equal to A ( R ) = ( b - a ) ( d - c ) . And, if S contains the disjoint union of several open rectangles, then the area of S should be greater than or equal to the sum of their areas.

We now specify precisely for which sets we will define the area. Let [ a , b ] be a fixed closed bounded interval in R and let l and u be two continuous real-valued functions on [ a , b ] for which l ( x ) < u ( x ) for all x ( a , b ) .

Given [ a , b ] , l , and u as in the above, let S be the set of all pairs ( x , y ) R 2 , for which a < x < b and l ( x ) < y < u ( x ) . Then S is called an open geometric set. If we replace the < signs with signs, i.e., if S is the set of all ( x , y ) such that a x b , and l ( x ) y u ( x ) , then S is called a closed geometric set. In either case, we say that S is bounded on the left and right by the vertical line segments { ( a , y ) : l ( a ) y u ( a ) } and { ( b , y ) : l ( b ) y u ( b ) } , and it is bounded below by the graph of the function l and bounded above by the graph of the function u . We call the union of these four bounding curves the boundary of S , and denote it by C S .

If the bounding functions u and l of a geometric set S are smooth or piecewise smooth functions, we will call S a smooth or piecewise smooth geometric set.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Analysis of functions of a single variable. OpenStax CNX. Dec 11, 2010 Download for free at http://cnx.org/content/col11249/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Analysis of functions of a single variable' conversation and receive update notifications?

Ask