<< Chapter < Page Chapter >> Page >

Sine and cosine identities

There are a few identities relating to the trigonometric functions that make working with triangles easier. These are:

  1. the sine rule
  2. the cosine rule
  3. the area rule

and will be described and applied in this section.

The sine rule

The Sine Rule

The sine rule applies to any triangle: sin A ^ a = sin B ^ b = sin C ^ c where a is the side opposite A ^ , b is the side opposite B ^ and c is the side opposite C ^ .

Consider A B C .

The area of A B C can be written as: area ABC = 1 2 c · h . However, h can be calculated in terms of A ^ or B ^ as:

sin A ^ = h b h = b · sin A ^

and

sin B ^ = h a h = a · sin B ^

Therefore the area of A B C is: 1 2 c · h = 1 2 c · b · sin A ^ = 1 2 c · a · sin B ^

Similarly, by drawing the perpendicular between point B and line A C we can show that: 1 2 c · b · sin A ^ = 1 2 a · b · sin C ^

Therefore the area of A B C is: 1 2 c · b · sin A ^ = 1 2 c · a · sin B ^ = 1 2 a · b · sin C ^

If we divide through by 1 2 a · b · c , we get: sin A ^ a = sin B ^ b = sin C ^ c

This is known as the sine rule and applies to any triangle, right angled or not.

There is a coastline with two lighthouses, one on either side of a beach. The two lighthouses are 0 , 67  km apart and one is exactly due east of the other. The lighthouses tell how close a boat is by taking bearings to the boat (remember – a bearing is an angle measured clockwise from north). These bearings are shown. Use the sine rule to calculate how far the boat is from each lighthouse.

  1. We can see that the two lighthouses and the boat form a triangle. Since we know the distance between the lighthouses and we have two angles we can use trigonometry to find the remaining two sides of the triangle, the distance of the boat from the two lighthouses.

  2. We need to know the lengths of the two sides AC and BC . We can use the sine rule to find our missing lengths.

    B C sin A ^ = A B sin C ^ B C = A B · sin A ^ sin C ^ = ( 0 , 67 km ) sin ( 37 ) sin ( 128 ) = 0 , 51 km
    A C sin B ^ = A B sin C ^ A C = A B · sin B ^ sin C ^ = ( 0 , 67 km ) sin ( 15 ) sin ( 128 ) = 0 , 22 km

Sine rule

  1. Show that sin A ^ a = sin B ^ b = sin C ^ c is equivalent to: a sin A ^ = b sin B ^ = c sin C ^ Note: either of these two forms can be used.
  2. Find all the unknown sides and angles of the following triangles:
    1. PQR in which Q ^ = 64 ; R ^ = 24 and r = 3
    2. KLM in which K ^ = 43 ; M ^ = 50 and m = 1
    3. ABC in which A ^ = 32 , 7 ; C ^ = 70 , 5 and a = 52 , 3
    4. XYZ in which X ^ = 56 ; Z ^ = 40 and x = 50
  3. In ABC, A ^ = 116 ; C ^ = 32 and AC = 23  m. Find the length of the side AB.
  4. In RST, R ^ = 19 ; S ^ = 30 and RT = 120  km. Find the length of the side ST.
  5. In KMS, K ^ = 20 ; M ^ = 100 and s = 23  cm. Find the length of the side m.

The cosine rule

The Cosine Rule

The cosine rule applies to any triangle and states that:

a 2 = b 2 + c 2 - 2 b c cos A ^ b 2 = c 2 + a 2 - 2 c a cos B ^ c 2 = a 2 + b 2 - 2 a b cos C ^

where a is the side opposite A ^ , b is the side opposite B ^ and c is the side opposite C ^ .

The cosine rule relates the length of a side of a triangle to the angle opposite it and the lengths of the other two sides.

Consider A B C which we will use to show that: a 2 = b 2 + c 2 - 2 b c cos A ^ .

In D C B : a 2 = ( c - d ) 2 + h 2 from the theorem of Pythagoras.

In A C D : b 2 = d 2 + h 2 from the theorem of Pythagoras.

We can eliminate h 2 from [link] and [link] to get:

b 2 - d 2 = a 2 - ( c - d ) 2 a 2 = b 2 + ( c 2 - 2 c d + d 2 ) - d 2 = b 2 + c 2 - 2 c d + d 2 - d 2 = b 2 + c 2 - 2 c d

In order to eliminate d we look at A C D , where we have: cos A ^ = d b . So, d = b cos A ^ . Substituting this into [link] , we get: a 2 = b 2 + c 2 - 2 b c cos A ^

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 maths. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11243/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 maths' conversation and receive update notifications?

Ask