<< Chapter < Page Chapter >> Page >

In physical world around us, we encounter many phenomena which repeat after certain interval of time. In mathematics, the notion of periodicity remains same but with more general connotation. The periodicity of a function is not limited to time. We look for repetition of function values with respect to independent variable. Time could be just one such independent variable. For example, we have seen that trigonometric functions are “many one” relations. This means that we get same value of trigonometric function for different angles. This “many one” relation is the basic requirement for a function to be periodic. In addition, these same values of the function should appear at regular intervals for the values of independent variables in the domain.

We can visualize periodic nature of a function by observing its graph in which a particular smallest segment of the plot can be repeated to construct complete plot.

Periodic function

A sine curve is constructed by repeating a segment of the curve as shown in the lower graph in the figure.

In the two graphs shown above, we have considered two segments corresponding to intervals of “ π ” and “ 2 π ”. The graphs are constructed by repeating the segments one after another. It is clear from the figure that we need smallest segment of an interval “ 2 π ” to construct a sine curve (lower curve).

Definition of periodic function

A function is said to be periodic if there exists a positive real number “T” such that

f x + T = f x for all x D

where “D” is the domain of the function f(x). The least positive real number “T” (T>0) is known as the fundamental period or simply the period of the function. The “T” is not a unique positive number. All integral multiple of “T” within the domain of the function is also the period of the function. Hence,

f x + n T = f x ; n Z , for all x D

In the context of periodic function, an “aperiodic” function is one, which in not periodic. On the other hand, a function is said to be anti-periodic if :

f x + T = - f x for all x D

Periodicity and period

In order to determine periodicity and period of a function, we can follow the algorithm as :

  • Put f(x+T) = f(x).
  • If there exists a positive number “T” satisfying equation in “1” and it is independent of “x”, then f(x) is periodic. Otherwise, function, “f(x)” is aperiodic.
  • The least value of “T” is the period of the periodic function.

Problem : Let f(x) be a function and “k” be a positive real number such that :

f x + k + f x = 0 for all x R

Prove that f(x) is periodic. Also determine its period.

Solution : The given equation can be re-written as :

f x + k = - f x for all x R

Here, our objective is to convert RHS of the equation as f(x). For this, we need to substitute "x" such that RHS function acquires RHS function form. Replacing “x” by “x+k”, we have :

f x + 2 k = - f x + k for all x R

Combining two equations,

f x + 2 k = - 1 X - f x = f x for all x R

It means that f(x) is a periodic function and its period is “2k”.

Problem : Determine period of the function :

f x = a sin k x + b cos k x

Solution : The function is sum of two trigonometric functions. We can reduce this function is terms of a single trigonometric function to determine its periodic nature. Let

a = r cos θ ; b = r sin θ

r = a 2 + b 2

Substituting in the function, we have :

f x = r cos θ sin k x + r sin θ cos k x = r sin k x + θ

This is a periodic function. Also, period of “ag(x)” is same as that of “g(x)”. Therefore, period of “r sin (kx + θ)” is same as that of “sin (kx + θ)”. On the other hand, period of g(ax+b) is equal to the period of g(x), divided by “|a|”. Now, period of “sinx” is “2π”. Hence, period of the given function is :

T = 2 π | k |

Alternatively, we can treat given function as addition of two functions. The period of each term is “2π/|k|”. Applying LCM rule (discussed later), the period of given function is equal to LCM of two periods, which is “2π/|k|”.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask