<< Chapter < Page | Chapter >> Page > |
Enthalpy changes are typically tabulated for reactions in which both the reactants and products are at the same conditions. A standard state is a commonly accepted set of conditions used as a reference point for the determination of properties under other different conditions. For chemists, the IUPAC standard state refers to materials under a pressure of 1 bar and solutions at 1 M, and does not specify a temperature. Many thermochemical tables list values with a standard state of 1 atm. Because the Δ H of a reaction changes very little with such small changes in pressure (1 bar = 0.987 atm), Δ H values (except for the most precisely measured values) are essentially the same under both sets of standard conditions. We will include a superscripted “o” in the enthalpy change symbol to designate standard state. Since the usual (but not technically standard) temperature is 298.15 K, we will use a subscripted “298” to designate this temperature. Thus, the symbol is used to indicate an enthalpy change for a process occurring under these conditions. (The symbol Δ H is used to indicate an enthalpy change for a reaction occurring under nonstandard conditions.)
The enthalpy changes for many types of chemical and physical processes are available in the reference literature, including those for combustion reactions, phase transitions, and formation reactions. As we discuss these quantities, it is important to pay attention to the extensive nature of enthalpy and enthalpy changes. Since the enthalpy change for a given reaction is proportional to the amounts of substances involved, it may be reported on that basis (i.e., as the Δ H for specific amounts of reactants). However, we often find it more useful to divide one extensive property (Δ H ) by another (amount of substance), and report a per-amount intensive value of Δ H , often “normalized” to a per-mole basis. (Note that this is similar to determining the intensive property specific heat from the extensive property heat capacity, as seen previously.)
Standard enthalpy of combustion is the enthalpy change when 1 mole of a substance burns (combines vigorously with oxygen) under standard state conditions; it is sometimes called “heat of combustion.” For example, the enthalpy of combustion of ethanol, −1366.8 kJ/mol, is the amount of heat produced when one mole of ethanol undergoes complete combustion at 25 °C and 1 atmosphere pressure, yielding products also at 25 °C and 1 atm.
Enthalpies of combustion for many substances have been measured; a few of these are listed in [link] . Many readily available substances with large enthalpies of combustion are used as fuels, including hydrogen, carbon (as coal or charcoal), and hydrocarbons (compounds containing only hydrogen and carbon), such as methane, propane, and the major components of gasoline.
Standard Molar Enthalpies of Combustion | ||
---|---|---|
Substance | Combustion Reaction | Enthalpy of Combustion, |
carbon | −393.5 | |
hydrogen | −285.8 | |
magnesium | −601.6 | |
sulfur | −296.8 | |
carbon monoxide | −283.0 | |
methane | −890.8 | |
acetylene | −1301.1 | |
ethanol | −1366.8 | |
methanol | −726.1 | |
isooctane | −5461 |
Notification Switch
Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?