<< Chapter < Page Chapter >> Page >

A random number generator picks a number from 1 to 9 in a uniform manner.

  • X ~ size 12{X "~" } {}
  • Graph the probability distribution.
  • f ( x ) = size 12{f \( x \) ={}} {}
  • μ = size 12{μ={}} {}
  • σ = size 12{σ={}} {}
  • P ( 3 . 5 < x < 7 . 25 ) = size 12{P \( 3 "." 5<X<7 "." "25" \) ={}} {}
  • P ( x > 5 . 67 ) = size 12{P \( X>5 "." "67" \) ={}} {}
  • P ( x > 5 x > 3 ) = size 12{P \( X>5 \lline X>3 \) ={}} {}
  • Find the 90th percentile.

The time (in minutes) until the next bus departs a major bus depot follows a distribution with f ( x ) = 1 20 where x goes from 25 to 45 minutes.

  • Define the random variable. X = size 12{X={}} {}
  • X ~ size 12{X "~" } {}
  • Graph the probability distribution.
  • The distribution is ______________ (name of distribution). It is _____________ (discrete or continuous).
  • μ = size 12{μ={}} {}
  • σ = size 12{σ={}} {}
  • Find the probability that the time is at most 30 minutes. Sketch and label a graph of the distribution. Shade the area of interest. Write the answer in a probability statement.
  • Find the probability that the time is between 30 and 40 minutes. Sketch and label a graph of the distribution. Shade the area of interest. Write the answer in a probability statement.
  • P ( 25 < x < 55 ) = size 12{P \( "25"<X<"55" \) ={}} {} _________. State this in a probability statement (similar to g and h ), draw the picture, and find the probability.
  • Find the 90th percentile. This means that 90% of the time, the time is less than _____ minutes.
  • Find the 75th percentile. In a complete sentence, state what this means. (See j .)
  • Find the probability that the time is more than 40 minutes given (or knowing that) it is at least 30 minutes.
  • X ~ U ( 25 , 45 ) size 12{X "~" U \( "25","45" \) } {}
  • uniform; continuous
  • 35 minutes
  • 5.8 minutes
  • 0.25
  • 0.5
  • 1
  • 43 minutes
  • 40 minutes
  • 0.3333

According to a study by Dr. John McDougall of his live-in weight loss program at St. Helena Hospital, the people who follow his program lose between 6 and 15 pounds a month until they approach trim body weight. Let’s suppose that the weight loss is uniformly distributed. We are interested in the weight loss of a randomly selected individual following the program for one month. (Source: The McDougall Program for Maximum Weight Loss by John A. McDougall, M.D.)

  • Define the random variable. X = size 12{X={}} {}
  • X ~ size 12{X "~" } {}
  • Graph the probability distribution.
  • f ( x ) = size 12{f \( x \) ={}} {}
  • μ = size 12{μ={}} {}
  • σ = size 12{σ={}} {}
  • Find the probability that the individual lost more than 10 pounds in a month.
  • Suppose it is known that the individual lost more than 10 pounds in a month. Find the probability that he lost less than 12 pounds in the month.
  • P ( 7 < x < 13 x > 9 ) = size 12{P \( 7<X<"13" \lline X>9 \) ={}} {} __________. State this in a probability question (similar to g and h), draw the picture, and find the probability.

A subway train on the Red Line arrives every 8 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a uniform distribution.

  • Define the random variable. X = size 12{X={}} {}
  • X ~ size 12{X "~" } {}
  • Graph the probability distribution.
  • f ( x ) = size 12{f \( x \) ={}} {}
  • μ = size 12{μ={}} {}
  • σ = size 12{σ={}} {}
  • Find the probability that the commuter waits less than one minute.
  • Find the probability that the commuter waits between three and four minutes.
  • 60% of commuters wait more than how long for the train? State this in a probability question (similar to g and h ), draw the picture, and find the probability.
  • X ~ U ( 0,8 ) size 12{X "~" U \( 0,8 \) } {}
  • f ( x ) = 1 8 where 0 x 8
  • 4
  • 2.31
  • 1 8
  • 1 8
  • 3.2

The age of a first grader on September 1 at Garden Elementary School is uniformly distributed from 5.8 to 6.8 years. We randomly select one first grader from the class.

  • Define the random variable. X = size 12{X={}} {}
  • X ~ size 12{X "~" } {}
  • Graph the probability distribution.
  • f ( x ) = size 12{f \( x \) ={}} {}
  • μ = size 12{μ={}} {}
  • σ = size 12{σ={}} {}
  • Find the probability that she is over 6.5 years.
  • Find the probability that she is between 4 and 6 years.
  • Find the 70th percentile for the age of first graders on September 1 at Garden Elementary School.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics using spreadsheets. OpenStax CNX. Jan 05, 2016 Download for free at http://legacy.cnx.org/content/col11521/1.23
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics using spreadsheets' conversation and receive update notifications?

Ask