<< Chapter < Page Chapter >> Page >

A typical corporation is full of frightening examples of overhead. Say your department has prepared a stack of paperwork to be completed by another department. What do you have to do to transfer that work? First, you have to be sure that your portion is completed; you can’t ask them to take over if the materials they need aren’t ready. Next, you need to package the materials — data, forms, charge numbers, and the like. And finally comes the official transfer. Upon receiving what you sent, the other department has to unpack it, do their job, repackage it, and send it back.

A lot of time gets wasted moving work between departments. Of course, if the overhead is minimal compared to the amount of useful work being done, it won’t be that big a deal. But it might be more efficient for small jobs to stay within one department. The same is true of subroutine and function calls. If you only enter and exit modules once in a relative while, the overhead of saving registers and preparing argument lists won’t be significant. However, if you are repeatedly calling a few small subroutines, the overhead can buoy them to the top of the profile. It might be better if the work stayed where it was, in the calling routine.

Additionally, subroutine calls inhibit compiler flexibility. Given the right opportunity, you’d like your compiler to have the freedom to intermix instructions that aren’t dependent upon each other. These are found on either side of a subroutine call, in the caller and callee. But the opportunity is lost when the compiler can’t peer into subroutines and functions. Instructions that might overlap very nicely have to stay on their respective sides of the artificial fence.

It helps if we illustrate the challenge that subroutine boundaries present with an exaggerated example. The following loop runs very well on a wide range of processors:


DO I=1,N A(I) = A(I) + B(I) * CENDDO

The code below performs the same calculations, but look at what we have done:


DO I=1,N CALL MADD (A(I), B(I), C)ENDDO SUBROUTINE MADD (A,B,C)A = A + B * C RETURNEND

Each iteration calls a subroutine to do a small amount of work that was formerly within the loop. This is a particularly painful example because it involves floating- point calculations. The resulting loss of parallelism, coupled with the procedure call overhead, might produce code that runs 100 times slower. Remember, these operations are pipelined, and it takes a certain amount of “wind-up” time before the throughput reaches one operation per clock cycle. If there are few floating-point operations to perform between subroutine calls, the time spent winding up and winding down pipelines figures prominently.

Subroutine and function calls complicate the compiler’s ability to efficiently man- age COMMON and external variables, delaying until the last possible moment actually storing them in memory. The compiler uses registers to hold the “live” values of many variables. When you make a call, the compiler cannot tell whether the subroutine will be changing variables that are declared as external or COMMON . Therefore, it’s forced to store any modified external or COMMON variables back into memory so that the callee can find them. Likewise, after the call has returned, the same variables have to be reloaded into registers because the compiler can no longer trust the old, register-resident copies. The penalty for saving and restoring variables can be substantial, especially if you are using lots of them. It can also be unwarranted if variables that ought to be local are specified as external or COMMON , as in the following code:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask