<< Chapter < Page Chapter >> Page >

Measuring heat

A flask containing 8.0 × 10 2 g of water is heated, and the temperature of the water increases from 21 °C to 85 °C. How much heat did the water absorb?

Solution

To answer this question, consider these factors:

  • the specific heat of the substance being heated (in this case, water)
  • the amount of substance being heated (in this case, 800 g)
  • the magnitude of the temperature change (in this case, from 21 °C to 85 °C).

The specific heat of water is 4.184 J/g °C, so to heat 1 g of water by 1 °C requires 4.184 J. We note that since 4.184 J is required to heat 1 g of water by 1 °C, we will need 800 times as much to heat 800 g of water by 1 °C. Finally, we observe that since 4.184 J are required to heat 1 g of water by 1 °C, we will need 64 times as much to heat it by 64 °C (that is, from 21 °C to 85 °C).

This can be summarized using the equation:

q = c × m × Δ T = c × m × ( T final T initial )
= ( 4.184 J/ g °C ) × ( 800 g ) × ( 85 20 ) °C = ( 4.184 J/ g ° C ) × ( 800 g ) × ( 65 ) ° C = 210,000 J ( = 210 kJ )

Because the temperature increased, the water absorbed heat and q is positive.

Check your learning

How much heat, in joules, must be added to a 5.00 × 10 2 -g iron skillet to increase its temperature from 25 °C to 250 °C? The specific heat of iron is 0.451 J/g °C.

Answer:

5.05 × 10 4 J

Got questions? Get instant answers now!

Note that the relationship between heat, specific heat, mass, and temperature change can be used to determine any of these quantities (not just heat) if the other three are known or can be deduced.

Determining other quantities

A piece of unknown metal weighs 348 g. When the metal piece absorbs 6.64 kJ of heat, its temperature increases from 22.4 °C to 43.6 °C. Determine the specific heat of this metal (which might provide a clue to its identity).

Solution

Since mass, heat, and temperature change are known for this metal, we can determine its specific heat using the relationship:

q = c × m × Δ T = c × m × ( T final T initial )

Substituting the known values:

6640 J = c × ( 348 g ) × ( 43.6 22.4 ) °C

Solving:

c = 6640 J ( 348 g ) × ( 21.2 °C ) = 0.900 J/g °C

Comparing this value with the values in [link] , this value matches the specific heat of aluminum, which suggests that the unknown metal may be aluminum.

Check your learning

A piece of unknown metal weighs 217 g. When the metal piece absorbs 1.43 kJ of heat, its temperature increases from 24.5 °C to 39.1 °C. Determine the specific heat of this metal, and predict its identity.

Answer:

c = 0.45 J/g °C; the metal is likely to be iron

Got questions? Get instant answers now!

Solar thermal energy power plants

The sunlight that reaches the earth contains thousands of times more energy than we presently capture. Solar thermal systems provide one possible solution to the problem of converting energy from the sun into energy we can use. Large-scale solar thermal plants have different design specifics, but all concentrate sunlight to heat some substance; the heat “stored” in that substance is then converted into electricity.

The Solana Generating Station in Arizona’s Sonora Desert produces 280 megawatts of electrical power. It uses parabolic mirrors that focus sunlight on pipes filled with a heat transfer fluid (HTF) ( [link] ). The HTF then does two things: It turns water into steam, which spins turbines, which in turn produces electricity, and it melts and heats a mixture of salts, which functions as a thermal energy storage system. After the sun goes down, the molten salt mixture can then release enough of its stored heat to produce steam to run the turbines for 6 hours. Molten salts are used because they possess a number of beneficial properties, including high heat capacities and thermal conductivities.

This figure has two parts labeled a and b. Part a shows rows and rows of trough mirrors. Part b shows how a solar thermal plant works. Heat transfer fluid enters a tank via pipes. The tank contains water which is heated. As the heat is exchanged from the pipes to the water, the water becomes steam. The steam travels to a steam turbine. The steam turbine begins to turn which powers a generator. Exhaust steam exits the steam turbine and enters a cooling tower.
This solar thermal plant uses parabolic trough mirrors to concentrate sunlight. (credit a: modification of work by Bureau of Land Management)

The 377-megawatt Ivanpah Solar Generating System, located in the Mojave Desert in California, is the largest solar thermal power plant in the world ( [link] ). Its 170,000 mirrors focus huge amounts of sunlight on three water-filled towers, producing steam at over 538 °C that drives electricity-producing turbines. It produces enough energy to power 140,000 homes. Water is used as the working fluid because of its large heat capacity and heat of vaporization.

Two pictures are shown and labeled a and b. Picture a shows a thermal plant with three tall metal towers. Picture b is an arial picture of the mirrors used at the plant. They are arranged in rows.
(a) The Ivanpah solar thermal plant uses 170,000 mirrors to concentrate sunlight on water-filled towers. (b) It covers 4000 acres of public land near the Mojave Desert and the California-Nevada border. (credit a: modification of work by Craig Dietrich; credit b: modification of work by “USFWS Pacific Southwest Region”/Flickr)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask