<< Chapter < Page Chapter >> Page >

Balancing chemical equations

The law of conservation of mass

In order to balance a chemical equation, it is important to understand the law of conservation of mass.

The law of conservation of mass

The mass of a closed system of substances will remain constant, regardless of the processes acting inside the system. Matter can change form, but cannot be created or destroyed. For any chemical process in a closed system, the mass of the reactants must equal the mass of the products.

In a chemical equation then, the mass of the reactants must be equal to the mass of the products. In order to make sure that this is the case, the number of atoms of each element in the reactants must be equal to the number of atoms of those same elements in the products. Some examples are shown below:

Example 1:

Fe + S FeS

Reactants

Atomic mass of reactants = 55.8 u + 32.1 u = 87.9 u

Number of atoms of each element in the reactants: (1 × Fe) and (1 × S)

Products

Atomic mass of product = 55.8 u + 32.1 u = 87.9 u

Number of atoms of each element in the products: (1 × Fe) and (1 × S)

Since the number of atoms of each element is the same in the reactants and in the products, we say that the equation is balanced .

Example 2:

H 2 + O 2 H 2 O

Reactants

Atomic mass of reactants = (1 + 1) + (16 + 16) = 34 u

Number of atoms of each element in the reactants: (2 × H) and (2 × O)

Product

Atomic mass of product = (1 + 1 + 16) = 18 u

Number of atoms of each element in the products: (2 × H) and (1 × O)

Since the total atomic mass of the reactants and the products is not the same and since there are more oxygen atoms in the reactants than there are in the product, the equation is not balanced .

Example 3:

NaOH + HCl NaCl + H 2 O

Reactants

Atomic mass of reactants = (23 + 16 + 1) + (1 + 35.4) = 76.4 u

Number of atoms of each element in the reactants: (1 × Na) + (1 × O) + (2 × H) + (1 × Cl)

Products

Atomic mass of products = (23 + 35.4) + (1 + 1 + 16) = 76.4 u

Number of atoms of each element in the products: (1 × Na) + (1 × O) + (2 × H) + (1 × Cl)

Since the number of atoms of each element is the same in the reactants and in the products, we say that the equation is balanced .

We now need to find a way to balance those equations that are not balanced so that the number of atoms of each element in the reactants is the same as that for the products. This can be done by changing the coefficients of the molecules until the atoms on each side of the arrow are balanced. You will see later in Grade 11 that these coefficients tell us something about the mole ratio in which substances react. They also tell us about the volume relationship between gases in the reactants and products.

Coefficients

Remember that if you put a number in front of a molecule, that number applies to the whole molecule. For example, if you write 2H 2 O, this means that there are 2 molecules of water. In other words, there are 4 hydrogen atoms and 2 oxygen atoms. If we write 3HCl, this means that there are 3 molecules of HCl. In other words there are 3 hydrogen atoms and 3 chlorine atoms in total. In the first example, 2 is the coefficient and in the second example, 3 is the coefficient.

Questions & Answers

what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask