<< Chapter < Page Chapter >> Page >

Radiation makes it impossible to stand close to a hot lava flow. Calculate the rate of heat transfer by radiation from 1 . 00  m 2 of 1200º C fresh lava into 30 . C surroundings, assuming lava’s emissivity is 1.00.

266  kW size 12{ - "266"`"kW"} {}

(a) Calculate the rate of heat transfer by radiation from a car radiator at 110 ° C into a 50.0º C environment, if the radiator has an emissivity of 0.750 and a 1.20 -m 2 surface area. (b) Is this a significant fraction of the heat transfer by an automobile engine? To answer this, assume a horsepower of 200 hp 1.5 kW and the efficiency of automobile engines as 25%.

Find the net rate of heat transfer by radiation from a skier standing in the shade, given the following. She is completely clothed in white (head to foot, including a ski mask), the clothes have an emissivity of 0.200 and a surface temperature of 10 . C , the surroundings are at 15 . 0ºC size 12{ - "15" "." "0°C"} {} , and her surface area is 1 . 60 m 2 size 12{1 "." "60"`m rSup { size 8{2} } } {} .

36 . 0  W size 12{ - "36" "." 0`W} {}

Suppose you walk into a sauna that has an ambient temperature of 50 .0ºC . (a) Calculate the rate of heat transfer to you by radiation given your skin temperature is 37 .0ºC , the emissivity of skin is 0.98, and the surface area of your body is 1 .50 m 2 . (b) If all other forms of heat transfer are balanced (the net heat transfer is zero), at what rate will your body temperature increase if your mass is 75.0 kg?

Thermography is a technique for measuring radiant heat and detecting variations in surface temperatures that may be medically, environmentally, or militarily meaningful.(a) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0ºC compared with that at 33 . 0ºC , such as on a person’s skin? (b) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0ºC compared with that at 20.0ºC , such as for warm and cool automobile hoods?

A thermograph of the chest area of a patient is shown. There are different colors showing different thermal regions.
Artist’s rendition of a thermograph of a patient’s upper body, showing the distribution of heat represented by different colors.

(a) 1.31%

(b) 20.5%

The Sun radiates like a perfect black body with an emissivity of exactly 1. (a) Calculate the surface temperature of the Sun, given that it is a sphere with a 7 . 00 × 10 8 -m size 12{7 "." "00" times "10" rSup { size 8{8} } "-m"} {} radius that radiates 3 . 80 × 10 26  W size 12{3 "." "80" times "10" rSup { size 8{"26"} } `W} {} into 3-K space. (b) How much power does the Sun radiate per square meter of its surface? (c) How much power in watts per square meter is that value at the distance of Earth, 1 . 50 × 10 11  m size 12{1 "." "50" times "10" rSup { size 8{"11"} } `m} {} away? (This number is called the solar constant.)

A large body of lava from a volcano has stopped flowing and is slowly cooling. The interior of the lava is at 1200ºC size 12{"1200°C"} {} , its surface is at 450ºC , and the surroundings are at 27 . 0ºC size 12{"27" "." "0°C"} {} . (a) Calculate the rate at which energy is transferred by radiation from 1 . 00  m 2 of surface lava into the surroundings, assuming the emissivity is 1.00. (b) Suppose heat conduction to the surface occurs at the same rate. What is the thickness of the lava between the 450ºC surface and the 1200ºC interior, assuming that the lava’s conductivity is the same as that of brick?

(a) 15.0  kW size 12{ - "15"`"kW"} {}

(b) 4.2 cm

Calculate the temperature the entire sky would have to be in order to transfer energy by radiation at 1000 W/m 2 —about the rate at which the Sun radiates when it is directly overhead on a clear day. This value is the effective temperature of the sky, a kind of average that takes account of the fact that the Sun occupies only a small part of the sky but is much hotter than the rest. Assume that the body receiving the energy has a temperature of 27 . 0ºC size 12{"27" "." "0°C"} {} .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask