<< Chapter < Page Chapter >> Page >
  • Define nonconservative forces and explain how they affect mechanical energy.
  • Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their potential energies and any nonconservative forces in terms of the work they do.

Nonconservative forces and friction

Forces are either conservative or nonconservative. Conservative forces were discussed in "Conservative Forces and Potential Energy". A nonconservative force    is one for which work depends on the path taken. Friction is a good example of a nonconservative force. As illustrated in [link] , work done against friction depends on the length of the path between the starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a system . Friction , for example, creates thermal energy    that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

(a) A drawing of a happy face is erased diagonally from a point A to a point B. (b) A drawing of a happy face is erased in the shape of the letter u, but starting from the same point A and ending at the same point B.
The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How nonconservative forces affect mechanical energy

Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. [link] compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as that described in [link] (a) first before studying more complicated systems as in [link] (b).

(a) A system is shown in three situations. First, a rock is dropped onto a spring attached to the ground. The rock has potential energy P E sub 0 at the highest point before it is dropped on the spring. In the second situation, the rock has fallen onto the spring and the spring is compressed and has potential energy P E sub s. And in the third situation, the spring pushes the rock into the air; then the rock has some kinetic and some potential energy, labeled as K E plus P E sub g prime. (b) A rock is at some height above the ground, having potential energy P E sub g, and as it hits the ground all of the rock’s energy is used to produce heat, sound, and deformation of the ground.
Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the work-energy theorem applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in "Kinetic Energy and the Work-Energy Theorem", the work-energy theorem states that the net work on a system equals the change in its kinetic energy, or W net = ΔKE size 12{W rSub { size 8{"net"} } =D"KE"} {} . The net work is the sum of the work by nonconservative forces plus the work by conservative forces. That is,

W net = W nc + W c , size 12{W rSub { size 8{"net"} } =W rSub { size 8{"nc"} } +W rSub { size 8{c} } } {}

so that

W nc + W c = Δ KE , size 12{W rSub { size 8{"nc"} } +W rSub { size 8{c} } =Δ"KE"} {}

where W nc size 12{W rSub { size 8{"nc"} } } {} is the total work done by all nonconservative forces and W c size 12{W rSub { size 8{c} } } {} is the total work done by all conservative forces.

A person pushing a heavy box up an incline. A force F p applied by the person is shown by a vector pointing up the incline. And frictional force f is shown by a vector pointing down the incline, acting on the box.
A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the crate; both forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by the person is greater than the work done by friction.

Consider [link] , in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we note that work done by a conservative force comes from a loss of gravitational potential energy, so that W c = Δ PE size 12{W rSub { size 8{c} } = - Δ"PE"} {} . Substituting this equation into the previous one and solving for W nc size 12{W rSub { size 8{"nc"} } } {} gives

W nc = Δ KE + Δ PE. size 12{W rSub { size 8{"nc"} } =Δ"KE"+Δ"PE"} {}

This equation means that the total mechanical energy ( KE + PE ) size 12{ \( "KE + PE" \) } {} changes by exactly the amount of work done by nonconservative forces. In [link] , this is the work done by the person minus the work done by friction. So even if energy is not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the change in total mechanical energy.

We rearrange W nc = Δ KE + Δ PE size 12{W rSub { size 8{"nc"} } =D"KE"+D"PE"} {} to obtain

KE i + PE i + W nc = KE f + PE f . size 12{"KE""" lSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } ="KE""" lSub { size 8{f} } +"PE" rSub { size 8{f} } } {}

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If W nc size 12{W rSub { size 8{"nc"} } } {} is positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in [link] . If W nc size 12{W rSub { size 8{"nc"} } } {} is negative, then mechanical energy is decreased, such as when the rock hits the ground in [link] (b). If W nc size 12{W rSub { size 8{"nc"} } } {} is zero, then mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Section summary

  • A nonconservative force is one for which work depends on the path.
  • Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
  • Work W nc size 12{W rSub { size 8{"nc"} } } {} done by a nonconservative force changes the mechanical energy of a system. In equation form, W nc = Δ KE + Δ PE size 12{W rSub { size 8{"nc"} } =Δ"KE"+Δ"PE"} {} or, equivalently, KE i + PE i + W nc = KE f + PE f size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } } {} .
  • When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead of finding the net work from the net force, or having to directly apply Newton’s laws.

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is sexual reproductive system
James
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask