Show that the acceleration of any object down a frictionless incline that makes an angle
with the horizontal is
. (Note that this acceleration is independent of mass.)
Show that the acceleration of any object down an incline where friction behaves simply (that is, where
) is
Note that the acceleration is independent of mass and reduces to the expression found in the previous problem when friction becomes negligibly small
Calculate the deceleration of a snow boarder going up a
, slope assuming the coefficient of friction for waxed wood on wet snow. The result of
[link] may be useful, but be careful to consider the fact that the snow boarder is going uphill. Explicitly show how you follow the steps in
Problem-Solving Strategies .
(a) Calculate the acceleration of a skier heading down a
slope, assuming the coefficient of friction for waxed wood on wet snow. (b) Find the angle of the slope down which this skier could coast at a constant velocity. You can neglect air resistance in both parts, and you will find the result of
[link] to be useful. Explicitly show how you follow the steps in the
Problem-Solving Strategies .
If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object parallel to the incline. This requires greater and greater friction for steeper slopes. Show that the maximum angle of an incline above the horizontal for which an object will not slide down is
. You may use the result of the previous problem. Assume that
and that static friction has reached its maximum value.
Calculate the maximum deceleration of a car that is heading down a
slope (one that makes an angle of
with the horizontal) under the following road conditions. You may assume that the weight of the car is evenly distributed on all four tires and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the deceleration. (Ignore rolling.) Calculate for a car: (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that
, the same as for shoes on ice.
Calculate the maximum acceleration of a car that is heading up a
slope (one that makes an angle of
with the horizontal) under the following road conditions. Assume that only half the weight of the car is supported by the two drive wheels and that the coefficient of static friction is involved—that is, the tires are not allowed to slip during the acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet concrete. (c) On ice, assuming that
, the same as for shoes on ice.
A freight train consists of two
engines and 45 cars with average masses of
. (a) What force must each engine exert backward on the track to accelerate the train at a rate of
if the force of friction is
, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?
(a)
(b)
Consider the 52.0-kg mountain climber in
[link] . (a) Find the tension in the rope and the force that the mountain climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her shoes and the cliff?
A contestant in a winter sporting event pushes a 45.0-kg block of ice across a frozen lake as shown in
[link] (a). (a) Calculate the minimum force
he must exert to get the block moving. (b) What is its acceleration once it starts to move, if that force is maintained?
(a)
(b)
Repeat
[link] with the contestant pulling the block of ice with a rope over his shoulder at the same angle above the horizontal as shown in
[link] (b).
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?