<< Chapter < Page Chapter >> Page >

That is,

N = w = w cos 25º = mg cos 25º . size 12{N=w rSub { size 8{ ortho } } =w"cos""25" rSup { size 8{ circ } } = ital "mg""cos""25" rSup { size 8{ circ } } } {}

Substituting this into our expression for kinetic friction, we get

f k = μ k mg cos 25º , size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos""25" rSup { size 8{ circ } } } {}

which can now be solved for the coefficient of kinetic friction μ k size 12{μ rSub { size 8{k} } } {} .

Solution

Solving for μ k size 12{μ rSub { size 8{k} } } {} gives

μ k = f k N = f k w cos 25º = f k mg cos 25º . size 12{μ rSub { size 8{k} } = { {f rSub { size 8{k} } } over {N} } = { {f rSub { size 8{k} } } over {w"cos""25" rSup { size 8{ circ } } } } = { {f rSub { size 8{k} } } over { ital "mg""cos""25" rSup { size 8{ circ } } } } } {}

Substituting known values on the right-hand side of the equation,

μ k = 45.0 N ( 62 kg ) ( 9 . 80 m /s 2 ) ( 0 . 906 ) = 0 . 082 . size 12{μ rSub { size 8{k} } = { {"45" "." 0N} over { \( "60"`"kg" \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) \( 0 "." "906" \) } } =0 "." "084"} {}

Discussion

This result is a little smaller than the coefficient listed in [link] for waxed wood on snow, but it is still reasonable since values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope that makes an angle θ size 12{θ} {} with the horizontal, friction is given by f k = μ k mg cos θ size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos"θ} {} . All objects will slide down a slope with constant acceleration under these circumstances. Proof of this is left for this chapter’s Problems and Exercises.

Take-home experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure the coefficient of kinetic friction between two objects. As shown in [link] , the kinetic friction on a slope f k = μ k mg cos θ size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos"θ} {} . The component of the weight down the slope is equal to mg sin θ size 12{ ital "mg""sin"θ} {} (see the free-body diagram in [link] ). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out:

f k = Fg x size 12{f rSub { size 8{k} } = ital "Fgx"} {}
μ k mg cos θ = mg sin θ . size 12{μ rSub { size 8{k} } ital "mg""cos"θ= ital "mg""sin"θ} {}

Solving for μ k size 12{μ rSub { size 8{k} } } {} , we find that

μ k = mg sin θ mg cos θ = tan θ . size 12{μ rSub { size 8{k} } = { { ital "mg""sin"θ} over { ital "mg""cos"θ} } ="tan"θ} {}

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find μ k size 12{μ rSub { size 8{K} } } {} . Note that the coin will not start to slide at all until an angle greater than θ size 12{θ} {} is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Discuss how this may affect the value for μ k size 12{μ rSub { size 8{K} } } {} and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to its weight. Furthermore, simple friction is always proportional to the normal force.

Making connections: submicroscopic explanations of friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

[link] illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to applied math and physics. OpenStax CNX. Oct 04, 2012 Download for free at http://cnx.org/content/col11426/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to applied math and physics' conversation and receive update notifications?

Ask