<< Chapter < Page
  Random processes   Page 1 / 1
Chapter >> Page >
This module introducts white, near white and colored processes.

White noise

If we have a zero-mean Wide Sense Stationary process X , it is a White Noise Process if its ACF is a delta function at τ 0 , i.e. it is of the form:

r X X τ P X δ τ
where P X is a constant.

The PSD of X is then given by

S X ω τ P X δ τ ω τ P X ω 0 P X
Hence X is white , since it contains equal power at all frequencies, as in white light .

P X is the PSD of X at all frequencies.

But:

Power of X 1 2 ω S X ω
so the White Noise Process is unrealizable in practice, because of its infinite bandwidth.

However, it is very useful as a conceptual entity and as an approximation to 'nearly white' processes which have finitebandwidth, but which are 'white' over all frequencies of practical interest. For 'nearly white' processes, r X X τ is a narrow pulse of non-zero width, and S X ω is flat from zero up to some relatively high cutoff frequency and then decays to zero above that.

Strict whiteness and i.i.d. processes

Usually the above concept of whiteness is sufficient, but a much stronger definition is as follows:

Pick a set of times t 1 t 2 t N to sample X t .

If, for any choice of t 1 t 2 t N with N finite, the random variables X t 1 , X t 2 , X t N are jointly independent , i.e. their joint pdf is given by

f X ( t 1 ) , X ( t 2 ) ,     X ( t N ) x 1 x 2 x N i 1 N f X ( t i ) x i
and the marginal pdfs are identical, i.e.
f X ( t 1 ) f X ( t 2 ) f X ( t N ) f X
then the process is termed Independent and Identically Distributed (i.i.d) .

If, in addition, f X is a pdf with zero mean, we have a Strictly White Noise Process .

An i.i.d. process is 'white' because the variables X t i and X t j are jointly independent, even when separated by an infinitesimally small interval between t i and t j .

Additive white gaussian noise (awgn)

In many systems the concept of Additive White Gaussian Noise (AWGN) is used. This simply means a process which has a Gaussian pdf, a white PSD, and is linearly added towhatever signal we are analysing.

Note that although 'white' and Gaussian' often go together, this is not necessary (especially for 'nearly white' processes).

E.g. a very high speed random bit stream has an ACF which is approximately a delta function, and hence is a nearly whiteprocess, but its pdf is clearly not Gaussian - it is a pair of delta functions at + V and V , the two voltage levels of the bit stream.

Conversely a nearly white Gaussian process which has been passed through a lowpass filter (see next section) will stillhave a Gaussian pdf (as it is a summation of Gaussians) but will no longer be white.

Coloured processes

A random process whose PSD is not white or nearly white, is often known as a coloured noise process.

We may obtain coloured noise Y t with PSD S Y ω simply by passing white (or nearly white) noise X t with PSD P X through a filter with frequency response ω , such that from this equation from our discussion of Spectral Properties of Random Signals.

S Y ω S X ω ω 2 P X ω 2
Hence if we design the filter such that
ω S Y ω P X
then Y t will have the required coloured PSD.

For this to work, S Y ω need only be constant (white) over the passband of the filter, so a nearly white process which satisfies this criterion is quite satisfactory andrealizable.

Using this equation from our discussion of Spectral Properties of Random Signals and , the ACF of the coloured noise is given by

r Y Y τ r X X τ h τ h τ P X δ τ h τ h τ P X h τ h τ
where h τ is the impulse response of the filter.

This Figure from previous discussion shows two examples of coloured noise, although the upper waveform is more 'nearlywhite' than the lower one, as can be seen in part c of this figure from previous discussion in which the upper PSD is flatter than the lower PSD. In these cases, the colouredwaveforms were produced by passing uncorrelated random noise samples (white up to half the sampling frequency) throughhalf-sine filters (as in this equation from our discussion of Random Signals) of length T b 10 and 50 samples respectively.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Random processes. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10204/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Random processes' conversation and receive update notifications?

Ask