<< Chapter < Page Chapter >> Page >
  • State the chain rules for one or two independent variables.
  • Use tree diagrams as an aid to understanding the chain rule for several independent and intermediate variables.
  • Perform implicit differentiation of a function of two or more variables.

In single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which allows us to find the derivative of the composition of two functions. The same thing is true for multivariable calculus, but this time we have to deal with more than one form of the chain rule. In this section, we study extensions of the chain rule and learn how to take derivatives of compositions of functions of more than one variable.

Chain rules for one or two independent variables

Recall that the chain rule for the derivative of a composite of two functions can be written in the form

d d x ( f ( g ( x ) ) ) = f ( g ( x ) ) g ( x ) .

In this equation, both f ( x ) and g ( x ) are functions of one variable. Now suppose that f is a function of two variables and g is a function of one variable. Or perhaps they are both functions of two variables, or even more. How would we calculate the derivative in these cases? The following theorem gives us the answer for the case of one independent variable.

Chain rule for one independent variable

Suppose that x = g ( t ) and y = h ( t ) are differentiable functions of t and z = f ( x , y ) is a differentiable function of x and y . Then z = f ( x ( t ) , y ( t ) ) is a differentiable function of t and

d z d t = z x · d x d t + z y · d y d t ,

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at ( x , y ) .

Proof

The proof of this theorem uses the definition of differentiability of a function of two variables. Suppose that f is differentiable at the point P ( x 0 , y 0 ) , where x 0 = g ( t 0 ) and y 0 = h ( t 0 ) for a fixed value of t 0 . We wish to prove that z = f ( x ( t ) , y ( t ) ) is differentiable at t = t 0 and that [link] holds at that point as well.

Since f is differentiable at P , we know that

z ( t ) = f ( x , y ) = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x x 0 ) + f y ( x 0 , y 0 ) ( y y 0 ) + E ( x , y ) ,

where lim ( x , y ) ( x 0 , y 0 ) E ( x , y ) ( x x 0 ) 2 + ( y y 0 ) 2 = 0 . We then subtract z 0 = f ( x 0 , y 0 ) from both sides of this equation:

z ( t ) z ( t 0 ) = f ( x ( t ) , y ( t ) ) f ( x ( t 0 ) , y ( t 0 ) ) = f x ( x 0 , y 0 ) ( x ( t ) x ( t 0 ) ) + f y ( x 0 , y 0 ) ( y ( t ) y ( t 0 ) ) + E ( x ( t ) , y ( t ) ) .

Next, we divide both sides by t t 0 :

z ( t ) z ( t 0 ) t t 0 = f x ( x 0 , y 0 ) ( x ( t ) x ( t 0 ) t t 0 ) + f y ( x 0 , y 0 ) ( y ( t ) y ( t 0 ) t t 0 ) + E ( x ( t ) , y ( t ) ) t t 0 .

Then we take the limit as t approaches t 0 :

lim t t 0 z ( t ) z ( t 0 ) t t 0 = f x ( x 0 , y 0 ) lim t t 0 ( x ( t ) x ( t 0 ) t t 0 ) + f y ( x 0 , y 0 ) lim t t 0 ( y ( t ) y ( t 0 ) t t 0 ) + lim t t 0 E ( x ( t ) , y ( t ) ) t t 0 .

The left-hand side of this equation is equal to d z / d t , which leads to

d z d t = f x ( x 0 , y 0 ) d x d t + f y ( x 0 , y 0 ) d y d t + lim t t 0 E ( x ( t ) , y ( t ) ) t t 0 .

The last term can be rewritten as

lim t t 0 E ( x ( t ) , y ( t ) ) t t 0 = lim t t 0 ( E ( x , y ) ( x x 0 ) 2 + ( y y 0 ) 2 ( x x 0 ) 2 + ( y y 0 ) 2 t t 0 ) = lim t t 0 ( E ( x , y ) ( x x 0 ) 2 + ( y y 0 ) 2 ) lim t t 0 ( ( x x 0 ) 2 + ( y y 0 ) 2 t t 0 ) .

As t approaches t 0 , ( x ( t ) , y ( t ) ) approaches ( x ( t 0 ) , y ( t 0 ) ) , so we can rewrite the last product as

lim ( x , y ) ( x 0 , y 0 ) ( E ( x , y ) ( x x 0 ) 2 + ( y y 0 ) 2 ) lim ( x , y ) ( x 0 , y 0 ) ( ( x x 0 ) 2 + ( y y 0 ) 2 t t 0 ) .

Since the first limit is equal to zero, we need only show that the second limit is finite:

lim ( x , y ) ( x 0 , y 0 ) ( ( x x 0 ) 2 + ( y y 0 ) 2 t t 0 ) = lim ( x , y ) ( x 0 , y 0 ) ( ( x x 0 ) 2 + ( y y 0 ) 2 ( t t 0 ) 2 ) = lim ( x , y ) ( x 0 , y 0 ) ( ( x x 0 t t 0 ) 2 + ( y y 0 t t 0 ) 2 ) = ( lim ( x , y ) ( x 0 , y 0 ) ( x x 0 t t 0 ) ) 2 + ( lim ( x , y ) ( x 0 , y 0 ) ( y y 0 t t 0 ) ) 2 .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask