State the chain rules for one or two independent variables.
Use tree diagrams as an aid to understanding the chain rule for several independent and intermediate variables.
Perform implicit differentiation of a function of two or more variables.
In single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which allows us to find the derivative of the composition of two functions. The same thing is true for multivariable calculus, but this time we have to deal with more than one form of the chain rule. In this section, we study extensions of the chain rule and learn how to take derivatives of compositions of functions of more than one variable.
Chain rules for one or two independent variables
Recall that the chain rule for the derivative of a composite of two functions can be written in the form
In this equation, both
and
are functions of one variable. Now suppose that
is a function of two variables and
is a function of one variable. Or perhaps they are both functions of two variables, or even more. How would we calculate the derivative in these cases? The following theorem gives us the answer for the case of one independent variable.
Chain rule for one independent variable
Suppose that
and
are differentiable functions of
and
is a differentiable function of
Then
is a differentiable function of
and
where the ordinary derivatives are evaluated at
and the partial derivatives are evaluated at
Proof
The proof of this theorem uses the definition of differentiability of a function of two variables. Suppose that
f is differentiable at the point
where
and
for a fixed value of
We wish to prove that
is differentiable at
and that
[link] holds at that point as well.
Since
is differentiable at
we know that
where
We then subtract
from both sides of this equation:
Next, we divide both sides by
Then we take the limit as
approaches
The left-hand side of this equation is equal to
which leads to
The last term can be rewritten as
As
approaches
approaches
so we can rewrite the last product as
Since the first limit is equal to zero, we need only show that the second limit is finite:
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?