<< Chapter < Page Chapter >> Page >
  • Describe the concept of environmental carrying capacity in the logistic model of population growth.
  • Draw a direction field for a logistic equation and interpret the solution curves.
  • Solve a logistic equation and interpret the results.

Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier chapter in the section on exponential growth and decay, which is the simplest model. A more realistic model includes other factors that affect the growth of the population. In this section, we study the logistic differential equation and see how it applies to the study of population dynamics in the context of biology.

Population growth and carrying capacity

To model population growth using a differential equation, we first need to introduce some variables and relevant terms. The variable t . will represent time. The units of time can be hours, days, weeks, months, or even years. Any given problem must specify the units used in that particular problem. The variable P will represent population. Since the population varies over time, it is understood to be a function of time. Therefore we use the notation P ( t ) for the population as a function of time. If P ( t ) is a differentiable function, then the first derivative d P d t represents the instantaneous rate of change of the population as a function of time.

In Exponential Growth and Decay , we studied the exponential growth and decay of populations and radioactive substances. An example of an exponential growth function is P ( t ) = P 0 e r t . In this function, P ( t ) represents the population at time t , P 0 represents the initial population    (population at time t = 0 ) , and the constant r > 0 is called the growth rate    . [link] shows a graph of P ( t ) = 100 e 0.03 t . Here P 0 = 100 and r = 0.03 .

A graph of an exponential function p(t) = 100 e ^ (0.03 t). It is an increasing concave up function starting in quadrant 2, crosses the y axis at (0, 100), and increases in quadrant 1.
An exponential growth model of population.

We can verify that the function P ( t ) = P 0 e r t satisfies the initial-value problem

d P d t = r P , P ( 0 ) = P 0 .

This differential equation has an interesting interpretation. The left-hand side represents the rate at which the population increases (or decreases). The right-hand side is equal to a positive constant multiplied by the current population. Therefore the differential equation states that the rate at which the population increases is proportional to the population at that point in time. Furthermore, it states that the constant of proportionality never changes.

One problem with this function is its prediction that as time goes on, the population grows without bound. This is unrealistic in a real-world setting. Various factors limit the rate of growth of a particular population, including birth rate, death rate, food supply, predators, and so on. The growth constant r usually takes into consideration the birth and death rates but none of the other factors, and it can be interpreted as a net (birth minus death) percent growth rate per unit time. A natural question to ask is whether the population growth rate stays constant, or whether it changes over time. Biologists have found that in many biological systems, the population grows until a certain steady-state population is reached. This possibility is not taken into account with exponential growth. However, the concept of carrying capacity allows for the possibility that in a given area, only a certain number of a given organism or animal can thrive without running into resource issues.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask