<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Identify the parts of a typical leaf
  • Describe the internal structure and function of a leaf
  • Compare and contrast simple leaves and compound leaves
  • List and describe examples of modified leaves

Leaves are the main sites for photosynthesis: the process by which plants synthesize food. Most leaves are usually green, due to the presence of chlorophyll in the leaf cells. However, some leaves may have different colors, caused by other plant pigments that mask the green chlorophyll.

The thickness, shape, and size of leaves are adapted to the environment. Each variation helps a plant species maximize its chances of survival in a particular habitat. Usually, the leaves of plants growing in tropical rainforests have larger surface areas than those of plants growing in deserts or very cold conditions, which are likely to have a smaller surface area to minimize water loss.

Structure of a typical leaf

Each leaf typically has a leaf blade called the lamina    , which is also the widest part of the leaf. Some leaves are attached to the plant stem by a petiole    . Leaves that do not have a petiole and are directly attached to the plant stem are called sessile    leaves. Small green appendages usually found at the base of the petiole are known as stipules . Most leaves have a midrib, which travels the length of the leaf and branches to each side to produce veins of vascular tissue. The edge of the leaf is called the margin. [link] shows the structure of a typical eudicot leaf.

 Illustration shows the parts of a leaf. The petiole is the stem of the leaf. The midrib is a vessel that extends from the petiole to the leaf tip. Veins branch from the midrib. The lamina is the wide, flat part of the leaf. The margin is the edge of the leaf.
Deceptively simple in appearance, a leaf is a highly efficient structure.

Within each leaf, the vascular tissue forms veins. The arrangement of veins in a leaf is called the venation    pattern. Monocots and dicots differ in their patterns of venation ( [link] ). Monocots have parallel venation; the veins run in straight lines across the length of the leaf without converging at a point. In dicots, however, the veins of the leaf have a net-like appearance, forming a pattern known as reticulate venation. One extant plant, the Ginkgo biloba , has dichotomous venation where the veins fork.

 Part A photo shows the broad, sword-shaped leaves of a tulip. Parallel veins run up the leaves. Part B photo shows a teardrop-shaped linden leaf that has veins radiating out from the midrib. Smaller veins radiate out from these. Right photo shows a fan-shaped ginkgo leaf, which has veins radiating out from the petiole.
(a) Tulip ( Tulipa ), a monocot, has leaves with parallel venation. The netlike venation in this (b) linden ( Tilia cordata ) leaf distinguishes it as a dicot. The (c) Ginkgo biloba tree has dichotomous venation. (credit a photo: modification of work by “Drewboy64”/Wikimedia Commons; credit b photo: modification of work by Roger Griffith; credit c photo: modification of work by "geishaboy500"/Flickr; credit abc illustrations: modification of work by Agnieszka Kwiecień)

Leaf arrangement

The arrangement of leaves on a stem is known as phyllotaxy    . The number and placement of a plant’s leaves will vary depending on the species, with each species exhibiting a characteristic leaf arrangement. Leaves are classified as either alternate, spiral, or opposite. Plants that have only one leaf per node have leaves that are said to be either alternate—meaning the leaves alternate on each side of the stem in a flat plane—or spiral, meaning the leaves are arrayed in a spiral along the stem. In an opposite leaf arrangement, two leaves arise at the same point, with the leaves connecting opposite each other along the branch. If there are three or more leaves connected at a node, the leaf arrangement is classified as whorled    .

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology 1308 bonus credit chapters--from openstax "biology". OpenStax CNX. Apr 25, 2013 Download for free at https://legacy.cnx.org/content/col11516/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology 1308 bonus credit chapters--from openstax "biology"' conversation and receive update notifications?

Ask