<< Chapter < Page Chapter >> Page >

For bottom reverberation, we will assume that the reflection coefficient is time invariant. In shallow water at low frequencies (<2000 Hz, say) the bottom reverberation dominates over surface reverberation. However, the acoustic propagation through the sound channel and specular reflection from the ocean surface introduces a time varying component to the reverberation formation process.

To derive the results needed for channel Doppler effects, we will restrict ourselves to the narrowband model.

The matched filter is given by:

m ( t , φ ) = t t + T y ( σ ) r ( σ t ) e j2 πφσ size 12{m \( t,φ\) = Int cSub { size 8{t} } cSup { size 8{t+T} } {y \(σ\) r rSup { size 8{*} } \(σ- t \) e rSup { size 8{ - j2 ital "πφσ"} } dσ} } {}

Since r ( t ) = 0 size 12{r \( t \) =0} {} for t < 0 size 12{t<0} {} and t > T size 12{t>T} {} , we extend the limits of integration for the matched filter response to:

m ( t , φ ) = y ( σ ) r ( σ t ) e j2 πφσ size 12{m \( t,φ\) = Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {y \(σ\) r rSup { size 8{*} } \(σ- t \) e rSup { size 8{ - j2 ital "πφσ"} } dσ} } {}

We define the effects of reverberation, targets, clutter and the acoustic channel, via a spreading function S ( τ , φ ) size 12{S \(τ,φ\) } {} acting on the transmitted waveform:

y ( t ) = E T S ( τ , φ ) e j2 πφ t r ( t τ ) dτdφ size 12{y \( t \) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,φ\) e rSup { size 8{j2 ital "πφ"t} } r \( t -τ\) dτdφ} } } {}

This expression does not include contributions of ambient noise, only scattering phenomena. The spreading function S ( τ , φ ) size 12{S \(τ,φ\) } {} defines the acoustic scattering, as a function of delay τ size 12{τ} {} and Doppler shift φ size 12{φ} {} for the sonar reception. The spreading function is a random variable, changing due to surface waves and time varying refraction effects (internal waves) in the sound channel.

Target echoes will have a small τ size 12{τ} {} region of non-zero spreading function, S Target ( τ , φ ) size 12{S rSub { size 8{"Target"} } \(τ,φ\) } {} . Reverberation will have an extended τ size 12{τ} {} region with significant S Reverb ( τ , φ ) size 12{S rSub { size 8{"Reverb"} } \(τ,φ\) } {} . The Doppler shift for both reverberation and targets will be related to receiver and source motion, as well as Doppler spreading due to surface and internal waves. The target will have additional Doppler contributions from its own motion.

Substituting the spreading function description to the sonar response into the matched filter we obtain

m ( t , φ ) = E T S ( τ , δ ) e j2 πδσ r ( σ τ ) r ( σ t ) e j2 πφσ dτdδ size 12{m \( t,φ\) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,δ\) e rSup { size 8{j2 ital "πδσ"} } r \(σ-τ\) } } r rSup { size 8{*} } \(σ- t \) e rSup { size 8{ - j2 ital "πφσ"} } dσ} dτdδ} {}

Which equals

m ( t , φ ) = E T S ( τ , δ ) e j2π ( φ δ ) σ r ( σ τ ) r ( σ t ) dτdδ size 12{m \( t,φ\) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,δ\) e rSup { size 8{ - j2π\(φ-δ\)σ} } r \(σ-τ\) } } r rSup { size 8{*} } \(σ- t \) dσ} dτdδ} {}

Letting σ ' = σ t size 12{ { {σ}} sup { ' }=σ- t} {} , we obtain

m ( t , φ ) = E T S ( τ , δ ) e j2π ( φ δ ) ( σ ' + τ ) r ( σ ' ) r ( σ ' ( t τ ) ) dτdδ size 12{m \( t,φ\) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,δ\) e rSup { size 8{ - j2π\(φ-δ\) \( { {σ}} sup { ' }+τ\) } } r \( { {σ}} sup { ' } \) } } r rSup { size 8{*} } \( { {σ}} sup { ' } - \( t -τ\) \) dσ} dτdδ} {}

Using the definition of the narrowband ambiguity function, the matched filter response becomes

m ( t , φ ) = E T S ( τ , δ ) e j2π ( φ δ ) τ χ ( t τ , φ δ ) dτdδ size 12{m \( t,φ\) = sqrt {E rSub { size 8{T} } } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,δ\) e rSup { size 8{ - j2π\(φ-δ\)τ} }χ\( t -τ,φ-δ\) dτdδ} } } {}

The response of the matched filter is a“twisted convolution”of the spreading function and the waveform ambiguity function. The exponential e j2π ( φ δ ) size 12{e rSup { size 8{ - j2π\(φ-δ\) } } } {} performs the twisting. Note that if the waveform ambiguity function was“perfect”, that is a single peak,

χ ( τ , φ ) = δ ( τ ) δ ( φ ) size 12{χ\(τ,φ\) =δ\(τ\)δ\(φ\) } {}

Then the matched filter response would become:

m ( t , φ ) = E T S ( t , φ ) + n ( t , φ ) size 12{m \( t,φ\) = sqrt {E rSub { size 8{T} } } S \( t,φ\) +n \( t,φ\) } {}

Where n ( t , φ ) size 12{n \( t,φ\) } {} is the response of the matched filter to ambient noise. In this sense, the matched filter is estimating the spreading function of the channel, with targets, clutter and reverberation all part of the spreading function. Note, however that χ ( 0,0 ) = 1 size 12{χ\( 0,0 \) =1} {} , so the ambiguity function cannot become a delta function.

Now, the power output of the matched filter is desired, so that Signal to Interference Ratios and similar quantities can be predicted. We will make statistical assumptions about the spreading function. The assumptions are that the spreading function is wide sense stationary and uncorrelated. This implies that the signals being processed are statistically stationary and that the scatterers are uncorrelated; so that (Van Trees, III, Ch 13):

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask